\
JAKARTA EE

Jakarta Connectors

Jakarta Connectors Team, https://projects.eclipse.org/projects/ee4j.jca

2.1, 17 April 2022

Table of Contents

Eclipse Foundation Specification License
Disclaimers
1. Jakarta Connectors, Version 2.1
2. Introduction
2.1. Overview
2.2. Scope
2.3. Target Audience
2.4. JDBC and Jakarta Connectors

2.5. Relationship With Other Integration Technologies (JBI and SCA)

2.6. Organization
2.7. Document Conventions
3. Overview

3.1. Definitions

3.1.1. Enterprise Information System (EIS)

3.1.2. Connector Architecture
3.1.3. EIS Resource
3.1.4. Resource Manager (RM)
3.1.5. Managed Environment
3.1.6. Non-Managed Environment
3.1.7. Connection
3.1.8. Application Component
3.1.9. Container

3.2. Rationale
3.2.1. System Contracts
3.2.2. Common Client Interface

3.3. Goals

4. Architecture of Jakarta Connectors

4.1. System Contracts

4.2. Client API

4.3. Requirements

4.4. Non-Managed Environment

4.5. Standalone Container Environment

5. Roles and Scenarios
5.1. Roles
5.1.1. Resource Adapter Provider
5.1.2. Application Server Vendor

© © © © © W0 I 9 O O U b= = W N =

T N e Y
© © © © I 9 9 0O b b W N R R =B O o o o o

5.1.3. Container Provider
5.1.4. Application Component Provider
5.1.5. Enterprise Tools Vendors
5.1.6. Application Assembler
5.1.7. Deployer
5.1.8. System Administrator
5.2. Scenario: Integrated Purchase Order System
5.2.1. Illustration of a Scenario Based on the Connector Architecture
5.3. Scenario: Business Integration
5.3.1. Connector Architecture Usage in Business Integration Scenario
6. Lifecycle Management
6.1. Overview
6.2. Goals
6.3. Lifecycle Management Model
6.3.1. ResourceAdapter JavaBean and Bootstrapping a Resource Adapter Instance
6.3.2. ManagedConnectionFactory JavaBean and Outbound Communication
6.3.3. ActivationSpec JavaBean and Inbound Communication
6.3.4. Resource Adapter Shutdown Procedure
6.3.4.1. Phase One
6.3.4.2. Phase Two
6.3.5. Requirements
6.3.6. Resource Adapter Implementation Guidelines
6.3.7. JavaBean Configuration and Deployment
6.3.7.1. ResourceAdapter JavaBean Instance Configuration
6.3.7.2. Resource Adapter Deployment
6.3.7.3. ManagedConnectionFactory JavaBean Instance Configuration
6.3.7.4. ActivationSpec JavaBean Instance Configuration
6.3.7.5. JavaBean Validation
6.3.7.6. Configuration Property Attributes
6.3.7.7. Resource Adapter Implementation Guidelines
6.3.8. Lifecycle Management in a Non-Managed Environment
6.3.9. A Sample Resource Adapter Implementation
7. Connection Management
7.1. Overview
7.2. Goals
7.3. Architecture: Connection Management
7.3.1. Overview: Managed Application Scenario

7.4. Application Programming Model

19
20
20
21
21
22
22
22
24
25
26
26
26
26
27
29
30
31
32
32
33
34
34
34
35
35
35
36
37
38
38
38
41
41
41
42
42
43

7.4.1. Managed Application Scenario
7.4.2. Non-Managed Application Scenario
7.4.3. Guidelines
7.5. Interface/Class Specification
7.5.1. ConnectionFactory and Connection [3]
7.5.1.1. Requirements
7.5.1.2. ConnectionRequestInfo
7.5.1.3. Additional Requirements
7.5.2. ConnectionManager
7.5.2.1. Interface
7.5.2.2. Requirements
7.5.3. ManagedConnectionFactory
7.5.3.1. Interface
7.5.3.2. Requirements
7.5.3.3. Connection Pool Implementation
7.5.3.4. Detecting Invalid Connections
7.5.3.5. Requirement for XA Recovery
7.5.4. ManagedConnection
7.5.4.1. Interface
7.5.4.2. Connection Sharing and Multiple Connection Handles
7.5.4.3. Connection Matching Contract
7.5.4.4. Cleanup of ManagedConnection
7.5.4.5. Requirements
7.5.5. ManagedConnectionMetaData
7.5.5.1. Interface
7.5.5.2. Requirements
7.5.6. ConnectionEventListener
7.5.6.1. Interface
7.5.7. ConnectionEvent
7.6. Error Logging and Tracing
7.6.1. ManagedConnectionFactory
7.6.2. ManagedConnection
7.7. Object Diagram
7.8. llustrative Scenarios
7.8.1. Scenario: Connection Pool Management
7.8.2. Scenario: Connection Matching
7.8.3. Scenario: Connection Event Notifications and Connection Close

7.8.3.1. Connection Cleanup

44
435
435
46
47
49
50
51
51
51
52
53
53
55
55
56
56
57
57
59
59
60
60
61
61
61
61
61
63
63
63
64
64
65
66
68
70
71

7.8.3.2. Connection Destroy
7.9. Architecture: Non-Managed Environment
7.9.1. Scenario: Programmatic Access to ConnectionFactory
7.9.2. Scenario: Connection Creation in Non-Managed Application Scenario
7.10. Requirements
7.10.1. Resource Adapter
7.10.2. Application Server
8. Transaction Management
8.1. Overview
8.2. Transaction Management Scenarios
8.2.1. Transactions Across Multiple Resource Managers
8.2.2. Local Transaction Management
8.3. Transaction Management Contract
8.3.1. Interface: ManagedConnection
8.3.2. Interface: XAResource
8.3.2.1. Implementation
8.3.3. Interface: LocalTransaction
8.4. Relationship to Jakarta Transaction and JTS
8.4.1. Jakarta Transaction Interfaces
8.5. Object Diagram
8.6. XAResource-based Transaction Contract
8.6.1. Scenarios Supported
8.6.2. Resource Adapter Requirements
8.6.2.1. General
8.6.2.2. One-phase Commit
8.6.2.3. Two-phase Commit
8.6.2.4. Transaction Association and Calling Protocol
8.6.2.5. Unilateral Roll-back
8.6.2.6. Read-Only Optimization
8.6.2.7. XID Support
8.6.2.8. Support for Failure Recovery
8.6.3. Transaction Manager Requirements
8.6.3.1. Interfaces
8.6.3.2. XID Requirements
8.6.3.3. One-phase Commit Optimization
8.6.3.4. Implementation Options
8.6.4. Scenario: Transactional Setup for a ManagedConnection

8.6.5. Scenario: Connection Close and Jakarta Transaction Transactional Cleanup

71
72
73
75
76
76
77
79
79
80
80
81
82
83
84
85
86
86
86
87
88
88
89
90
90
90
91
91
91
91
92
92
92
92
92
93
93
95

8.6.6. OID: Transaction Completion
8.7. Local Transaction Management Contract
8.7.1. Interface: LocalTransaction
8.7.2. Interface: ConnectionEventListener
8.7.2.1. Requirements
8.8. Scenarios: Local Transaction Management
8.8.1. Local Transaction Cleanup
8.8.2. Component Termination
8.8.3. Transaction Interleaving
8.8.4. Scenario
8.9. Connection Sharing
8.9.1. Sharing Violation Detection
8.9.1.1. Scenario 1
8.9.1.2. Scenario 2
8.10. Transaction Scenarios
8.10.1. Requirements
8.10.2. Illustrative Scenarios
8.10.3. Scenario: Local Transaction
8.11. Connection Association
8.11.1. Scenario
8.11.2. Connection Association
8.11.3. Requirements
8.12. Local Transaction Optimization

8.12.1. Requirements

8.13. Runtime Transaction Support Level Specification

8.14. Interface: TransactionSynchronizationRegistry
8.15. Requirements
8.15.1. Resource Adapter
8.15.1.1. Auto Commit
8.15.2. Application Server
8.16. Connection Optimizations
8.16.1. Lazy Connection Association Optimization
8.16.1.1. API Additions
8.16.2. Lazy Transaction Enlistment Optimization
8.16.3. API Additions
9. Security Architecture
9.1. Overview
9.2. Goals

96

97

98

98

99

99
100
100
100
100
101
102
102
103
103
103
104
105
108
109
110
110
111
111
111
113
113
113
114
114
115
115
117
118
118
120
120
120

9.3. Terminology
9.4. Application Security Model
9.4.1. Scenario: Container-Managed Sign-on
9.4.2. Scenario: Component-Managed Sign-on
9.5. EIS Sign-on
9.5.1. Authentication Mechanism
9.5.2. Resource Principal
9.5.3. Authorization Model
9.5.4. Secure Association
9.6. Roles and Responsibilities
9.6.1. Application Component Provider
9.6.2. Deployer
9.6.3. Application Server
9.6.4. EIS Vendor
9.6.5. Resource Adapter Provider
9.6.6. System Administrator
10. Security Contract
10.1. Security Contract
10.1.1. Interfaces and Classes
10.1.2. Subject
10.1.3. Resource Principal
10.1.4. GenericCredential
10.1.4.1. Interface
10.1.4.2. Implementation
10.1.5. GSSCredential
10.1.5.1. Implementation
10.1.6. PasswordCredential
10.1.7. ConnectionManager
10.1.8. ManagedConnectionFactory
10.1.8.1. Contract for the Application Server
10.1.8.2. Contract for Resource Adapter
10.1.9. ManagedConnection
10.2. Requirements
10.2.1. Resource Adapter
10.2.2. Application Server
11. Work Management
11.1. Overview
11.2. Goals

121
122
122
123
124
124
124
125
126
127
127
127
128
128
128
129
130
130
130
130
131
131
132
133
133
133
133
134
135
136
138
140
141
141
141
143
143
144

11.3. Work Management Model
11.3.1. Requirements
11.3.2. Work Interface
11.3.3. WorkManager Interface
11.3.3.1. Work Submit
11.3.3.2. Work Accepted
11.3.3.3. Work Rejected
11.3.3.4. Work Started
11.3.3.5. Work Completed
11.3.3.6. Requirements
11.3.4. WorkListener Interface and WorkEvent Class
11.3.4.1. Requirements
11.3.5. ExecutionContext Class
11.3.6. Resource Adapter Thread Usage Recommendations
11.4. Periodic Execution of Work Instances
11.4.1. Tllustration: Using a Work Instance to Listen on Multiple Network Endpoints
11.4.2. Work Management in a Non-Managed Environment
11.4.3. Resource Adapter association
11.4.4. Distributed Work processing
11.4.4.1. DistributableWork Interface
11.4.4.2. DistributableWorkManager Interface
11.4.4.3. DistributableWork Submission and Processing
12. Generic Work Context
12.1. Overview
12.2. Goals
12.3. Generic Work Context Model
12.3.1. Standard and Custom Work Contexts
12.3.2. Requirements
12.4. WorkContextProvider and WorkContext Interface
12.4.1. Indicating Support for a WorkContext Type
12.4.2. Checking Support for a WorkContext Type
12.4.3. Handling Errors During Context Assignment
12.5. TransactionContext Class
12.6. HintsContext Interface
12.6.1. Standard Hints
12.6.1.1. Work Name Hint
12.6.1.2. Long-running Work instance Hint

12.7. WorkContextLifecycleListener Interface

144
144
150
151
152
153
153
153
153
154
155
158
158
159
160
161
162
162
162
162
163
164
166
166
166
167
167
168
172
174
175
175
177
178
180
180
180
180

12.8. Illustrative Example
13. Inbound Communicaton
13.1. Overview
13.2. An Illustrative Use Case
14. Message Inflow
14.1. Overview
14.2. Goals
14.3. Message Inflow Model
14.4. Endpoint Deployment
14.4.1. Message Endpoint
14.4.2. Resource Adapter
14.4.2.1. List of Supported Message Listener Types
14.4.2.2. ActivationSpec JavaBean
14.4.2.3. Administered Objects
14.4.2.4. Configuring Administered Objects
14.4.3. Endpoint Deployer
14.4.4. Application Server
14.4.5. Message Provider
14.4.6. Endpoint Deployment Steps
14.4.7. Requirements
14.4.8. Structure of a Message Listener Interface
14.4.9. Multiple Endpoint Activations With Similar Activation Configuration
14.4.9.1. Requirements
14.5. Message Delivery
14.5.1. Sample Resource Adapter Code To Illustrate Message Delivery
14.5.1.1. Requirements
14.5.2. Message Redelivery Upon Crash Recovery
14.5.3. Durable Message Delivery Setup
14.5.4. Concurrent Delivery of Messages
14.5.4.1. Requirements
14.5.5. Delivery Semantics and Acknowledgement
14.5.6. Transacted Delivery (Using Container-Managed Transaction)
14.5.7. Non-Transacted Delivery
14.5.8. Transacted Delivery Using an Imported Transaction
14.5.9. Requirements
14.6. Endpoint Undeployment
14.7. Jakarta Messaging Use Case

14.7.1. Message-Driven Bean Asynchronously Receiving Messages

182
186
186
186
188
188
189
189
195
196
197
198
198
199
200
200
200
201
202
203
203
204
204
205
206
208
208
209
210
210
210
211
213
214
214
215
219
225

14.7.1.1. Message-Driven Bean Deployment 225
14.7.1.2. Message Delivery 225
14.7.1.3. Message-Driven Bean Undeployment 226
14.7.2. Jakarta Enterprise Beans Using Jakarta Messaging API to Send and Synchronously Recei26

Messages Via a Jakarta Messaging Resource Adapter

14.7.2.1. Using Jakarta Messaging API to Send Messages 226
14.7.2.2. Jakarta EE Component Using Jakarta Messaging API to Synchronously Receive 227
Messages
14.8. A Non-Jakarta Messaging Use Case 228
14.9. Resource Adapter Deployment Descriptor 228
14.9.1. Resource Adapter Deployment 230
14.9.2. Message-Driven Bean Asynchronously Receiving Notifications From an EIS 230
14.9.2.1. The Message-Driven Bean Deployment Descriptor 230
14.9.3. Message-Driven Bean and Resource Adapter Activation 232
14.9.4. Message Delivery 233
15. Jakarta Enterprise Beans Invocation 234
15.1. Overview 234
15.2. Jakarta Enterprise Beans Invocation Model 234
15.3. An Illustrative Use Case 235
15.3.1. Message-Driven Bean Dispatcher Pattern 237
16. Transaction Inflow 238
16.1. Overview 238
16.2. Goals 238
16.3. Use Case Scenario 239
16.4. Transaction Inflow Model 240
16.4.1. Processing of Transactional Calls 240
16.4.2. Transaction Completion Processing 241
16.4.3. Crash Recovery Processing 243
16.4.4. Requirements 245
16.4.5. Non-Requirements 246
16.4.6. Recommendations 247
16.5. Transaction Inflow in a Non-Managed Environment 247
17. Security Inflow 248
17.1. Overview 248
17.2. Goals 248
17.3. Security Inflow Model 249
17.4. SecurityContext Class 253

17.4.1. Establishing the Security Context 254

17.4.2. Callbacks for Information from the Application Server
17.4.3. Case 1: Identity in the Container Security Domain
17.4.4. Case 2: Identity Translated Between Security Domains
17.4.5. Establising a Principal as the Caller Identity
17.4.5.1. Case A: Establishing a Single Principal as the Caller Identity
17.4.5.2. Case B: Establishing an Unauthenticated Security Context
17.4.6. Security Configuration Responsibilities
17.5. Requirements
17.6. Illustrative Example
17.6.1. Case 1: Identity in the Container Security Domain
17.6.2. Case 2: Identity Translated Between Security Domains
18. Common Client Interface
18.1. Overview
18.2. Goals
18.3. Scenarios
18.3.1. Enterprise Application Integration Framework
18.3.2. Metadata Repository and API
18.3.3. Enterprise Application Development Tool
18.4. Common Client Interface
18.4.1. Requirements
18.5. Connection Interfaces
18.5.1. ConnectionFactory
18.5.2. Requirements
18.6. ConnectionSpec
18.6.1. Connection
18.6.1.1. Auto Commit
18.7. Interaction Interfaces
18.7.1. Interaction
18.7.2. InteractionSpec
18.7.2.1. Standard Properties
18.7.2.2. ResultSet Properties
18.7.2.3. Additional Properties
18.7.2.4. Implementation
18.7.2.5. Administered Object
18.7.2.6. Illustrative Scenario
18.7.3. LocalTransaction
18.7.3.1. Requirements
18.8. Basic Metadata Interfaces

256
257
258
260
261
261
262
263
263
263
265
267
267
267
268
268
268
268
269
270
271
271
272
273
273
274
275
275
276
276
277
278
278
278
278
279
279
279

18.8.1. ConnectionMetaData
18.8.1.1. Implementation
18.8.2. ResourceAdapterMetaData
18.9. Service Endpoint Message Listener Interface
18.10. Exception Interfaces
18.10.1. ResourceException
18.10.2. ResourceWarning
18.11. Record
18.11.1. Component-View Contract
18.11.1.1. Type Mapping
18.11.1.2. Record Interface
18.11.1.3. MappedRecord and IndexedRecord Interfaces
18.11.1.4. RecordFactory
18.11.2. Interaction and Record
18.11.3. Resource Adapter-view Contract
18.11.3.1. Streamable Interface
18.12. ResultSet
18.12.1. ResultSet Interface
18.12.1.1. Type Mapping
18.12.1.2. ResultSet Types
18.12.1.3. Scrolling
18.12.1.4. Concurrency Types
18.12.1.5. Updatability
18.12.1.6. Persistence of Java Objects
18.12.1.7. Support for SQL Types
18.12.1.8. Support for Customized SQL Type Mapping
18.12.2. ResultSetMetaData
18.12.3. ResultSetInfo
18.13. Code Samples
18.13.1. Connection
18.13.2. InteractionSpec
18.13.3. Mapped Record
18.13.4. ResultSet
18.13.5. Custom Record
19. Metadata Annotations
19.1. Overview
19.2. Goals

19.3. Deployment Descriptors and Annotations

280
280
280
282
282
282
282
283
284
284
285
286
287
287
288
288
289
291
291
291
291
292
292
292
293
293
293
293
295
295
295
296
297
298
300
300
300
300

19.3.1. metadata-complete Deployment Descriptor Element
19.3.2. Merging Annotations and Deployment Descriptor
19.3.3. Annotation Processing Requirements of Superclasses
19.4. @Connector
19.4.1. Implementing the ResourceAdapter Interface
19.4.2. Example
19.4.3. @AuthenticationMechanism
19.4.4. @SecurityPermission
19.5. @ConfigProperty
19.5.1. Discovery of Configuration Properties
19.6. @ConnectionDefinition and @ConnectionDefinitions
19.6.1. Example
19.7. @Activation
19.7.1. Example
19.8. @AdministeredObject
19.9. Resource Definition Annotations
19.9.1. @ConnectionFactoryDefinition
19.9.1.1. Example
19.9.2. @ConnectionFactoryDefinitions
19.9.2.1. Example
19.9.3. @AdministeredObjectDefinition
19.9.3.1. Example
19.9.4. @AdministeredObjectDefinitions
19.9.4.1. Example
20. API Requirements
20.1. Requirements of the Application Server
20.2. Requirements of the Resource adapter
20.3. JavaBean Requirements
20.4. Equality Constraints
20.4.1. Equality based on Java Object Identity
20.4.2. Equality Based on Config Properties and Class Information
21. Packaging Requirements
21.1. Overview
21.2. Packaging
21.2.1. Resource Adapter Archive
21.2.2. RAR Contents
21.2.3. Sample Directory Structure

21.2.4. Requirements

301
302
303
303
305
305
306
307
307
309
309
310
311
311
312
313
314
315
316
316
317
319
319
320
322
322
322
323
323
323
323
325
325
326
327
327
328
328

21.3. Class Loading Requirements
21.4. Deployment
21.4.1. Resource Adapter Provider
21.4.2. Deployer
21.4.2.1. Standalone Resource Adapter Module
21.4.2.2. Resource Adapter Module with Jakarta EE Application
21.4.2.3. Configuration
21.4.2.4. Security Configuration
21.5. Interfaces/Classes
21.5.1. ResourceAdapter
21.5.1.1. Requirements
21.5.2. ManagedConnectionFactory
21.5.2.1. Requirements
21.5.3. Properties Conventions
21.5.4. Standard Properties
21.6. JNDI Configuration and Lookup
21.6.1. Responsibilities
21.6.1.1. Deployer
21.6.1.2. Resource Adapter
21.6.1.3. Application Server
21.6.2. Scenario: Serializable
21.6.3. Scenario: Referenceable
21.6.3.1. ObjectFactory Implementation
21.6.3.2. Deployment
21.6.3.3. Scenario: Connection Factory Lookup
21.6.4. Requirements
21.7. Resource Adapter XML Schema Definition
22. Runtime Environment
22.1. Programming APIs
22.2. Security Permissions
22.3. Requirements
22.3.1. Example
22.4. Privileged Code
22.4.1. Example
22.5. Dependency Injection
23. Exceptions
23.1. ResourceException

23.2. System Exceptions

329
329
330
332
333
333
333
333
334
334
334
334
335
335
335
336
336
337
337
337
338
339
340
341
342
344
345
370
370
370
373
373
374
374
375
377
377
377

23.2.1. Exception Hierarchy
23.3. Work Exceptions
23.4. Additional Exceptions
24. Compatibility and Migration
24.1. Compatibility
25. Caching Manager
25.1. Overview
26. Synchronization Contract
26.1. Interface
26.2. Implementation
27. Security Scenarios
27.1. eStore Application
27.1.1. Scenario
27.1.2. Security Environment
27.1.3. Deployment
27.2. Employee Self-Service Application
27.2.1. Architecture
27.2.2. Security Environment
27.2.3. Deployment
27.2.4. Scenario
27.3. Integrated Purchasing Application
27.3.1. Architecture
27.3.2. Security Environment
27.3.3. Deployment
28. JAAS Based Security Architecture
28.1. Java Authentication and Authorization Service (JAAS)
28.2. Requirements
28.3. Security Architecture
28.3.1. JAAS Modules
28.3.2. llustrative Examples: JAAS Module
28.3.2.1. Principal Mapping Module
28.3.2.2. Credential Mapping Module
28.3.2.3. Kerberos Module
28.4. Security Configuration
28.4.1. JAAS Configuration
28.5. Scenarios
28.5.1. Scenario: Resource Adapter Managed Authentication

28.5.2. Scenario: Kerberos and Principal Delegation

378
380
380
381
381
382
382
384
384
384
385
385
386
386
387
388
388
388
389
389
390
390
391
391
393
393
393
394
394
395
395
395
396
397
397
397
397
398

28.5.3. Scenario: GSS-API 399
28.5.4. Scenario: Kerberos Authentication After Principal Mapping 400
28.5.5. Scenario: EIS-Specific Authentication 401

Eclipse Foundation Specification License

Specification: Jakarta Connectors
Version: 2.1
Status: Final

Release: 17 April 2022
Copyright (c) 2018, 2022 Eclipse Foundation.

Eclipse Foundation Specification License

By using and/or copying this document, or the Eclipse Foundation document from which this statement
is linked, you (the licensee) agree that you have read, understood, and will comply with the following
terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document
from which this statement is linked, in any medium for any purpose and without fee or royalty is
hereby granted, provided that you include the following on ALL copies of the document, or portions
thereof, that you use:

* link or URL to the original Eclipse Foundation document.

 All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual
representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse Foundation,
Inc. https://www.eclipse.org/legal/efsl.php”

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be
provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to
this license, except anyone may prepare and distribute derivative works and portions of this document
in software that implements the specification, in supporting materials accompanying such software,
and in documentation of such software, PROVIDED that all such works include the notice below.
HOWEVER, the publication of derivative works of this document for use as a technical specification is
expressly prohibited.

The notice is:

"Copyright (c) 2018, 2022 Eclipse Foundation. This software or document includes material copied from
or derived from Jakarta™ Connectors https://jakarta.ee/specifications/connectors/2.1/"

Jakarta Connectors 1

https://www.eclipse.org/legal/efsl.php
https://jakarta.ee/specifications/connectors/2.1/

Eclipse Foundation Specification License

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

2 Jakarta Connectors

Chapter 1. Jakarta Connectors, Version 2.1

Chapter 1. Jakarta Connectors, Version 2.1

Copyright (c) 2013, 2022 Eclipse Foundation, Oracle and/or its affiliates

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Jakarta Connectors 3

2.1. Overview

Chapter 2. Introduction

The Jakarta Platform, Enterprise Edition (Jakarta EE platform) provides containers for client
applications, web components based on Jakarta Servlets and Jakarta Server Pages and Jakarta
Enterprise Beans components. These containers provide deployment and runtime support for
application components. They provide a federated view of the services provided by the underlying
application server for the application components.

Containers can run on existing systems; for example, web servers for the web containers; application
servers, TP monitors, and database systems for Enterprise Bean containers. This enables enterprises to
leverage both the advantages of their existing systems and those of Jakarta EE. Enterprises can write,
or rewrite, new applications using Jakarta EE capabilities and can also encapsulate parts of existing
applications in Enterprise Beans, Jakarta Server Pages or servlets.

Enterprise applications access functions and data associated with applications running on Enterprise
Information Systems (EIS). Application servers extend their containers and support connectivity to
heterogeneous EISs. Enterprise tools and Enterprise Application Integration (EAI) vendors add value
by providing tools and frameworks to simplify the EIS integration task.

For enterprise application integration, bi-directional connectivity between enterprise applications and
EIS is essential. Jakarta Connectors defines standard contracts that allow bi-directional connectivity
between enterprise applications and EISs. It also formalizes the relationships, interactions, and the
packaging of the integration layer, thus enabling enterprise application integration.

2.1. Overview

Jakarta Connectors defines a standard architecture for connecting the Jakarta EE platform to
heterogeneous EISs. Examples of EISs include Enterprise Resource Planning (ERP), mainframe
transaction processing (TP), and database systems.

Jakarta Connectors defines a set of scalable, secure, and transactional mechanisms that enable the
integration of EISs with application servers1 and enterprise applications.

Jakarta Connectors also defines a Common Client Interface (CCI) for EIS access. The CCI defines a client
API for interacting with heterogeneous EISs.

Jakarta Connectora enables an EIS vendor to provide a standard resource adapter for its EIS. A
resource adapter is a system-level software driver that is used by a Java application to connect to an
EIS. The resource adapter plugs into an application server and provides connectivity between the EIS,
the application server, and the enterprise application. The resource adapter serves as a protocol
adapter that allows any arbitrary EIS communication protocol to be used for connectivity.

An application server vendor extends its system once to support the connector architecture and is then
assured of seamless connectivity to multiple EISs. Likewise, an EIS vendor provides one standard
resource adapter which has the capability to plug in to any application server that supports the

4 Jakarta Connectors

#a10022

2.2. Scope

connector architecture.

2.2. Scope
Version 2.1 of the connector architecture defines:

* A standard set of system-level contracts between an application server and EIS. These contracts
focus on the important system-level aspects of integration: connection management, transaction
management, and security.

* A Common Client Interface (CCI) that defines a client API for interacting with multiple EISs.

* A standard deployment and packaging protocol for resource adapters.
Refer to section 2.2.2 for the rationale behind the Common Client Interface.

» Lifecycle management contract. A contract between an application server and a resource adapter
that allows an application server to manage the lifecycle of a resource adapter. This contract
provides a mechanism for the application server to bootstrap a resource adapter instance during
its deployment or application server startup, and to notify the resource adapter instance during its
undeployment or during an orderly shutdown of the application server.

* Work management contract. A contract between an application server and a resource adapter
that allows a resource adapter to do work (monitor network endpoints, call application
components, etc.) by submitting Work instances to an application server for execution. The
application server dispatches threads to execute submitted Work instances. This allows a resource
adapter to avoid creating or managing threads directly, and allows an application server to
efficiently pool threads and have more control over its runtime environment. The resource adapter
can control the security context and transaction context with which Work instances are executed.

* Transaction inflow contract. A contract between an application server and a resource adapter
that allows a resource adapter to propagate an imported transaction to an application server. This
contract also allows a resource adapter to transmit transaction completion and crash recovery calls
initiated by an EIS, and ensures that the ACID (Atomicity, Consistency, Isolation and Durability)
properties of the imported transaction are preserved.

* Message inflow contract. A standard, generic contract between an application server and a
resource adapter that allows a resource adapter to asynchronously deliver messages to message
endpoints residing in the application server independent of the specific messaging style, messaging
semantics, and messaging infrastructure used to deliver messages. This contract also serves as the
standard message provider pluggability contract that allows a wide range of message providers
(Java Message Service (JMS), Java API for XML Messaging (JAXM), etc.) to be plugged into any Java
EE compatible application server by way of a resource adapter.

* Packaging Model. Describes the packaging model for different types of resource adapters
(outbound only, inbound only, or both).

* Generic work context contract. A generic contract that enables a resource adapter to control the
execution context of a Work instance that it has submitted to the application server for execution.

Jakarta Connectors 5

2.3. Target Audience

The Generic work contract provides the mechanism for a resource adapter to augment the runtime
context of a Work instance with additional contextual information flown-in from the EIS. This
contract enables a resource adapter to control, in a more flexible manner, the contexts in which the
Work instances submitted by it are executed by the application server’s WorkManager .

» Security work context. A standard contract that enables a resource adapter to establish security
information while submiting a Work instance for execution to a WorkManager and while
delivering messages to message endpoints residing in the application server. This contract provides
a mechanism to support the execution of a Work instance in the context of an established identity.
It also supports the propagation of user information/Principal information from an EIS to a
MessageEndpoint during Message Inflow.

Version 2.1 of Jakarta Connectors provides minor updates required for Jakarta EE 10 including
compiled with Java 11 Version 2.0 of Jakarta Connectors moves the old Java Connectors Architecture
specification to Jakarta EE.

2.3. Target Audience

The target audience for this specification includes:

EIS vendors and resource adapter providers
* Messaging system vendors
» Application server vendors and container providers
* Enterprise application developers and system integrators
* Enterprise tool and EAI vendors
The system-level contracts between an application server and an EIS are targeted towards EIS vendors

(or resource adapter providers, if the two roles are different) and application server vendors. The CCI
is targeted primarily towards enterprise tools and EAI vendors.

2.4. JDBC and Jakarta Connectors

The JavaTM DataBase Connectivity ("JDBCTM") API defines a standard Java API for accessing relational
databases. The JDBC technology provides an API for sending SQL statements to a database and
processing the tabular data returned by the database.

The connector architecture is a standard architecture for integrating Java EE applications with EISs
that are not relational databases. Each of these EISs currently provides a native function call API for
identifying a function to call, specifying its input data, and processing its output data. The goal of the
Common Client Interface (CCI) is to provide an EIS independent API for coding these EIS function calls.

The CCI is targeted at EIS development tools and other sophisticated users of EISs. The CCI provides a
way to minimize the EIS specific code required by such tools. Most Java EE developers will access EISs
using these tools rather than using CCI directly.

6 Jakarta Connectors

2.5. Relationship With Other Integration Technologies (JBI and SCA)

It is expected that many Java EE applications will combine relational database access using JDBC with
EIS access using EIS access tools based on CCI.

The connector architecture defines a standard SPI (Service Provider Interface) for integrating the
transaction, security, and connection management facilities of an application server with those of a
transactional resource manager. The JDBC 3.0 specification JDBC API Specification, version 4.1 specifies
the relationship of JDBC to the SPI specified in the connector architecture.

2.5. Relationship With Other Integration Technologies
(JBI and SCA)

The Enterprise Application Integration (EAI) and Business to Business integration (B2B) functional
space may be considered, in an abstract sense, as forms of network service composition. That is, in a
typical EAI/B2B scenario, an enterprise application may make use of network resources to realize some
of its functionality. In this context, the network resource may be a REST service, a SOAP service, a
database server, a JMS topic/queue, some legacy application, etc.

The Java Business Integration (JBI) and Service Component Architecture (SCA) are integration
technologies that come to mind in the EAI/B2B space. They allow the creation and consumption of such
network services. They enable the building of applications through composition of services in an
enterprise by adopting a Service Oriented Architecture (SOA). These technologies can be used to
implement integration with various forms of network resources that are not tied to a specific external
architectural style.

The Connector architecture covers the category of network resources that expose some form of
connection oriented protocol. Database servers, JMS systems, legacy apps, etc. typically fall into this
category of network resource. The Connector architecture is the mechanism that the Java EE platform
provides to simplify use of such network resources.

2.6. Organization

This document begins by describing the rationale and goals for creating a standard architecture to
integrate an application server with multiple heterogeneous EISs. It then describes the key concepts
relevant to the connector architecture. These sections provide an overview of the architecture.

This document then describes typical scenarios for using the connector architecture. This chapter
introduces the various roles and responsibilities involved in the development and deployment of
enterprise applications that integrate with multiple EISs.

After these descriptive sections, this document focuses on the prescriptive aspects of the connector
architecture.

Jakarta Connectors 7

2.7. Document Conventions

2.7. Document Conventions

A regular Palatino font is used for describing the connector architecture.

An italic font is used for paragraphs that contain descriptive notes providing clarifications.
A regular Courier font is used for Java source code, class, interface and method names.

The requirements section occurring in various chapters of this document highlight only the salient
requirements, but do not contain all the requirements. So, this entire document must be used as a
requirements specification.

Note that the scenarios described in this document are illustrative in scope. The intent of the scenarios
is not to specify a prescriptive way of implementing a particular contract.

This document uses the Jakarta Enterprise Beans component model to describe some scenarios. The
Jakarta Enterprise Beans specification (see Jakarta Enterprise Beans Specification, version 4.0 provides
the latest details of the component model.

8 Jakarta Connectors

3.1. Definitions

Chapter 3. Overview

This chapter introduces key concepts that are required to understand Jakarta Connectors. It lays down
a reference framework to facilitate a formal specification of the connector architecture in the
subsequent chapters of this document.

3.1. Definitions

3.1.1. Enterprise Information System (EIS)

An EIS provides the information infrastructure for an enterprise. An EIS offers a set of services to its
clients. These services are exposed to clients as local and/or remote interfaces. Examples of an EIS
include:

* Enterprise Resource Planning (ERP) system

* Mainframe transaction processing (TP) system

* Legacy database system
There are two aspects of an EIS:

» System level services - for example, SAP RFC, CICS ECI

* An application specific interface - for example, the table schema and specific stored procedures of a
database, the specific CICS TP program

3.1.2. Connector Architecture

An architecture for integrating Jakarta EE servers with EISs. There are two parts to this architecture:
an EIS vendor-provided resource adapter and an application server that allows this resource adapter
to be plugged in. This architecture defines a set of contracts (such as transactions, security, connection
management) that a resource adapter has to support to plug in to an application server.

These contracts support bi-directional communication (outbound and inbound) between an
application server and an EIS by way of a resource adapter. That is, the application server may use the
resource adapter for outbound communication to the EIS, and it may also use the resource adapter for
inbound communication from the EIS.

3.1.3. EIS Resource
An EIS resource provides EIS-specific functionality to its clients. Examples are:

* Arecord or set of records in a database system
* A business object in an ERP system

* A transaction program in a transaction processing system

Jakarta Connectors 9

3.1. Definitions

3.1.4. Resource Manager (RM)

A resource manager manages a set of shared EIS resources. A client requests access to a resource
manager to use its managed resources. A transactional resource manager can participate in
transactions that are externally controlled and coordinated by a transaction manager.

In the context of the connector architecture, a client of a resource manager can either be a middle-tier
application server or a client-tier application. A resource manager is typically in a different address
space or on a different machine from the client that accesses it.

This document refers to an EIS as a resource manager when it is mentioned in the context of
transaction management. Examples of resource managers are a database system, a mainframe TP
system, and an ERP system.

3.1.5. Managed Environment

A managed environment defines an operational environment for a Jakarta EE-based, multi-tier, web-
enabled application that accesses EISs. The application consists of one or more application
components—]Jakarta Enterprise Beans, Jakarta Server Pages, servlets—which are deployed on
containers. These containers can be one of the following:

* Web containers that host Jakarta Server Pages, servlets, and static HTML pages

* Enterprise Bean containers that host Enterprise Bean components

* Application client containers that host standalone application clients

3.1.6. Non-Managed Environment

A non-managed environment defines an operational environment for a two-tier application. An
application client directly uses a resource adapter to access the EIS, which defines the second tier of a
two-tier application.

3.1.7. Connection

A connection provides connectivity to a resource manager. It enables an application client to connect
to a resource manager, perform transactions, and access services provided by that resource manager.
A connection can be either transactional or non-transactional. Examples include a database connection
and an SAP R/3 connection. A connection to a resource manager may be used by a client for bi-
directional communication, depending on the capabilities of the resource manager.

3.1.8. Application Component

An application component can be a server-side component, such as an Jakarta Enterprise Bean, Jakarta
Server Page, or servlet, that is deployed, managed, and executed on an application server. It can also
be a component executed on the web-client tier but made available to the web-client by an application
server. Examples of the latter type of application component include a Java applet, and a DHTML page.

10 Jakarta Connectors

3.2. Rationale

3.1.9. Container

A container is a part of an application server that provides deployment and runtime support for
application components. It provides a federated view of the services provided by the underlying
application server for the application components. For more details on different types of standard
containers, refer to the Jakarta Enterprise Beans (see Jakarta™ Enterprise Beans Specification, Version
4.0, Jakarta Server Pages, and servlet specifications.

3.2. Rationale

This section describes the rationale behind Jakarta Connectors.

3.2.1. System Contracts

A standard architecture is needed to integrate various EISs with an application server. Without a
standard, EIS vendors and application server vendors may have to use vendor-specific architectures to
provide EIS integration.

Jakarta Connectors provides a Java solution to the problem of bi-directional connectivity between the
multitude of application servers and EISs. By using the Jakarta Connectors, it is no longer necessary for
EIS vendors to customize their product for each application server. An application server vendor who
conforms to the Jakarta Connectors also does not need to add custom code whenever it wants to extend
its application server to support connectivity to a new EIS.

Jakarta Connectors enables an EIS vendor to provide a standard resource adapter for its EIS. The
resource adapter plugs into an application server and provides the underlying infrastructure for the
integration between an EIS and the application server.

An application server vendor extends its system only once to support Jakarta Connectors and is then
assured of connectivity to multiple EISs. Likewise, an EIS vendor provides one standard resource
adapter and it has the capability to plug in to any application server that supports Jakarta Connectors.

The following figure shows that a standard EIS resource adapter can plug into multiple application
servers. Similarly, multiple resource adapters for different EISs can plug into an application server.
This system-level pluggability is made possible through Jakarta Connectors.

If there are m application servers and n EISs, Jakarta Connectors reduces the scope of the integration
problem from an m x n problem to an m + n problem.

Figure System Level Pluggability Between Application Servers and EISs

Jakarta Connectors 11

3.2. Rationale

Application server extension for
resource adapter pluggability

Standard resource adapter

Resource Adapters
Application Server

Enterprise Information Systems

—

Resource Adapter

Application Servers Enterprise Information System

3.2.2. Common Client Interface

An enterprise tools vendor provides tools that lead to a simple application programming model for EIS
access, thereby reducing the effort required in EIS integration. An EAI vendor provides a framework
that supports integration across multiple EISs. Both types of vendors need to integrate across
heterogeneous EISs.

Each EIS typically has a client API that is specific to the EIS. Examples of EIS client APIs are RFC for SAP
R/3 and ECI for CICS.

An enterprise tools vendor adapts different client APIs for target EISs to a common client API. The
adapted API is typically specific to a tools vendor and supports an application programming model
common across all EISs. Adapting the API requires significant effort on the part of a tools vendor. In
this case, the m X n integration problem applies to tools vendors.

Jakarta Connectors provides a solution for the m x n integration problem for tools and EAI vendors.
Jakarta Connectors specifies a standard Common Client Interface (CCI) that supports a common client
API across heterogeneous EISs.

All EIS resource adapters that support CCI are capable of being plugged into enterprise tools and EAI
frameworks in a standard way. A tools vendor need not do any API adoption; the vendor can focus on
providing its added value of simplifying EIS integration.

The CCI drastically reduces the effort and learning requirements for tools vendor by narrowing the
scope of an m x n problem to an m + n problem if there are m tools and n EISs.

12 Jakarta Connectors

3.3. Goals

3.3. Goals

Jakarta Connectors has been designed with the following goals:

» Simplify the development of scalable, secure, and transactional resource adapters for a wide range
of EISs—ERP systems, database systems, mainframe-based transaction processing systems.

* Be sufficiently general to cover a wide range of heterogeneous EISs. The sufficient generality of
Jakarta Connectors ensures that there are various implementation choices for different resource
adapters; each choice is based on the characteristics and mechanisms of an underlying EIS.

* Be not tied to a specific application server implementation, but applicable to all Jakarta EE
platform compliant application servers from multiple vendors.

* Provide a standard client API for enterprise tools and EAI vendors. The standard API will be
common across heterogeneous EISs.

» Express itself in a manner that allows an organization to unambiguously determine whether or not
an implementation is compatible.

* Be simple to understand and easy to follow, regardless of whether one is designing a resource
adapter for a particular EIS or developing/deploying application components that need to access
multiple EISs. This simplicity means Jakarta Connectors introduces only a few new concepts, and
places minimal implementation requirements so that it can be leveraged across different
integration scenarios and environments.

* Define contracts and responsibilities for various roles that provide pieces for standard bi-
directional connectivity to an EIS. This enables a standard resource adapter from a EIS vendor to
be pluggable across multiple application servers.

* Enable an enterprise application programmer in a non-managed application environment to
directly use the resource adapter to access the underlying EIS. This is in addition to managed access
to an EIS, with the resource adapter deployed in the middle-tier application server.

Jakarta Connectors 13

4.1. System Contracts

Chapter 4. Architecture of Jakarta Connectors

This chapter gives an overview of the architecture.

Multiple resource adapters—that is, one resource adapter per type of EIS—are pluggable into an
application server. This capability enables application components deployed on the application server
to access the underlying EISs.

An application server and an EIS collaborate to keep all system-level mechanisms—transactions,
security, and connection management—transparent from the application components. As a result, an
application component provider focuses on the development of business and presentation logic for its
application components and need not get involved in the system-level issues related to EIS integration.
This leads to an easier and faster cycle for the development of scalable, secure, and transactional
enterprise applications that require connectivity with multiple EISs.

Figure Overview of the Jakarta Connectors architecture

Container-Component
Contract

Application Component

Client API

System Contracts

Application Server

Resources Adapter

Enterprise Information
System

4.1. System Contracts

To achieve a standard system-level pluggability between application servers and EISs, Jakarta
Connectors defines a standard set of system-level contracts between an application server and an EIS.
The EIS side of these system-level contracts are implemented in a resource adapter.

A resource adapter is specific to an underlying EIS. It is a system-level software driver that is used by
an application server or an application component to connect to an EIS.

A resource adapter plugs into an application server. The resource adapter and application server
collaborate to provide the underlying mechanisms—transactions, security, connection pooling, and
dispatch to application components.

A resource adapter is used within the address space of the application server. Examples of resource
adapters are:

* A JDBC driver to connect to a relational database, as specified in the JDBC specification. For more

14 Jakarta Connectors

4.1. System Contracts

information on JDBC, see JDBC API Specification, version 4.1
* Aresource adapter to connect to an ERP system
* Aresource adapter to connect to a TP system

* Aresource adapter to plug-in a messaging system
A resource adapter may provide different types of connectivity between an application and an EIS.

* Outbound communication. The resource adapter allows an application to connect to an EIS
system and perform work. All communication is initiated by the application. In this case, the
resource adapter serves as a passive library for connecting to an EIS, and executes in the context of
the application threads.

* Inbound communication. The resource adapter allows an EIS to call application components and
perform work. All communication is initiated by the EIS. The resource adapter may request threads
from the application server or create its own threads.

* Bi-directional communication. The resource adapter supports both outbound and inbound
communication.

Jakarta Connectors defines the following set of standard contracts between an application server and
EIS:

* A connection management contract that enables an application server to pool connections to an
underlying EIS, and enables application components to connect to an EIS. This leads to a scalable
application environment that can support a large number of clients requiring access to EISs.

* A transaction management contract between the transaction manager and an EIS that supports
transactional access to EIS resource managers. This contract enables an application server to use a
transaction manager to manage transactions across multiple resource managers. This contract also
supports transactions that are managed internal to an EIS resource manager without the necessity
of involving an external transaction manager.

* A security contract that enables secure access to an EIS. This contract provides support for a secure
application environment that reduces security threats to the EIS and protects valuable information
resources managed by the EIS.

* A lifecycle management contract that allows an application server to manage the lifecycle of a
resource adapter. This contract provides a mechanism for the application server to bootstrap a
resource adapter instance during its deployment or application server startup, and to notify the
resource adapter instance during its undeployment or during an orderly shutdown of the
application server.

* A work management contract that allows a resource adapter to do work (monitor network
endpoints, call application components, etc.) by submitting Work instances to an application server
for execution. The application server dispatches threads to execute submitted Work instances. This
allows a resource adapter to avoid creating or managing threads directly, and allows an application
server to efficiently pool threads and have more control over its runtime environment. The
resource adapter can control the security context and transaction context with which Work

Jakarta Connectors 15

4.2.

Client API

instances are executed.

A generic work context contract that enables a resource adapter to control the execution context of
a Work instance that it has submitted to the application server for execution. The Generic Work
Context Contract provides the mechanism for a resource adapter to augment the runtime context
of a Work instance with additional contextual information flown-in from the EIS. This contract
enables a resource adapter to control, in a more flexible manner, the contexts in which the Work
instances submitted by it are executed by the application server’s WorkManager .

A transaction inflow contract that allows a resource adapter to propagate an imported transaction
to an application server. This contract also allows a resource adapter to transmit transaction
completion and crash recovery calls initiated by an EIS, and ensures that the ACID properties of the
imported transaction are preserved.

A security work context that enables a resource adapter to establish security information while
submiting a Work instance for execution to a WorkManager and while delivering messages to
message endpoints residing in the application server. This contract provides a mechanism to
support the execution of a Work instance in the context of an established identity. It also supports
the propagation of user information/Principal information from an EIS to a MessageEndpoint
during Message Inflow.

A message inflow contract that allows a resource adapter to asynchronously deliver messages to
message endpoints residing in the application server independent of the specific messaging style,
messaging semantics, and messaging infrastructure used to deliver messages. This contract also
serves as the standard message provider pluggability contract that allows a wide range of message
providers (Jakarta Messaging, Jakarta XML Web Services, etc.) to be plugged into any Jakarta EE
compatible application server by way of a resource adapter.

Overview of Jakarta Connectors Architecture does not illustrate any contracts that are internal to an
application server implementation. The specific mechanisms and contracts within an application
server are outside the scope of the connector architecture specification. This specification focuses on
the system-level contracts between the application server and the EIS.

Overview of Jakarta Connectors Architecture, the application server, application component and
resource adapter are shown as separate entities. This is done to illustrate that there is a logical
separation of the respective roles and responsibilities defined for the support of the system level
contracts. However, this separation does not imply a physical separation, as in an application server,
application component and a resource adapter running in separate processes.

4.2. Client API

The client API used by application components for EIS access may be defined as:

16

The standard Common Client Interface (CCI) as specified in Common Client Interface.

A client API specific to the type of a resource adapter and its underlying EIS. An example of such an
EIS specific client API is JDBC for relational databases.

Jakarta Connectors

4.3. Requirements

The Common Client Interface (CCI) defines a common client API for accessing EISs. The CCI is targeted
towards Enterprise Application Integration (EAI) and enterprise tools vendors.

4.3. Requirements

Jakarta Connectors requires that the Jakarta Connectors-compliant resource adapter and the
application server support the system contracts. Detailed requirements for each system contract are
specified in later chapters.

Jakarta Connectors recommends, though it does not mandate, that a resource adapter support CCI as
the client API. The recommendation enables Jakarta Connectors to provide a solution for the m x n
integration problem for application development tools and EAI vendors.

Jakarta Connectors allows a resource adapter with an EIS-specific client API to support system
contracts and to be capable of standard Jakarta Connectors-based pluggability into an application
server.

4.4. Non-Managed Environment

Jakarta Connectors supports access to EISs from non-managed application clients; for example, Java
applications and applets.

In a non-managed two-tier application environment, an application client directly uses a resource
adapter library. A resource adapter, in this case, exposes its low-level transactions and security APIs to
its clients. An application client has to take responsibility for managing security and transactions (and
rely on connection pooling if done by the resource adapter internally) by using the low-level APIs
exposed by the resource adapter. This model is similar to the way a two-tier JDBC application client
accesses a database system in a non-managed environment.

4.5. Standalone Container Environment

Server Providers can provide a Connector container within a product that implements the Jakarta EE
Full Profile or within a subset profile such as the Jakarta EE Web Profile. The complete set of
application server requirements in this specification is required for a compliant Jakarta EE Connectors
container within an implementation of the Jakarta EE Full Profile. The minimum set, listed below, must
be supported for a compliant Jakarta EE Connectors container within an implementation of any subset
of the Jakarta EE Full Profile. Overall profile requirements are described within the Jakarta™ EE
Platform Specification Version 10.

Non-"Full Profile” implementations may only support a subset of the component specifications that
were mandated to be present in a full Jakarta EE platform product implementation. An
implementation of the Connector specification bundled in such a managed environment is described
as standalone connector container below.

Based on the availability of other dependent component specification implementations, the following

Jakarta Connectors 17

4.5, Standalone Container Environment

requirements must be satisfied by a standalone connector container.

* If a MessageEndpointFactory implementation (such as support for message-driven beans) is
available, the Message Inflow requirements specified in Message Inflow must be satisfied by it.

 If an implementation of the Bean Validation specification is provided, the requirements in Jakarta™
Bean Validation Specification, Version 3.0 must be supported.

An existing resource adapter archive RAR may not be fully functional in a standalone implementation,
though. For example a bi-directional resource adapter archive deployed on a standalone
implementation that does not support Message Inflow would not have the corresponding Message
Inflow support (endpointActivation) provided to the resource adapter.

A standalone connector container implementation that does not support one of the dependent
component specification implementations listed above must not fail the deployment of a resource
adapter that uses the capabilities in the unsupported specifications. For instance, if a bi-directional
resource adapter is deployed to a standalone connector container that does not support Message
Inflow, the container will not be able to make calls to the endpointActivation method in the
ResourceAdapter JavaBean because the implementation does not support Message Inflow (and
therefore MessageEndpoint deployment). However, the container must support the deployment of a bi-
directional resource adapter and support other capabilities of the resource adapter that do not rely on
support for Message Inflow (outbound communication, use of the WorkManager etc.).

The standalone connector container must support the baseline compatibility requirements as defined
by the Jakarta™ Authentication specification and support the Security Inflow requirements specified in
Security Inflow. See Jakarta™ Authentication Specification, Version 3.0 for more information on the
Jakarta™ Authentication specification.

This specification does not define new application components or require any particular existing
application component to be supported in the standalone connector container environment.

18 Jakarta Connectors

5.1. Roles

Chapter 5. Roles and Scenarios

This chapter describes a set of roles specific to the connector architecture. The goal of this chapter is to
specify contracts that ensure that the output of each role is compatible with the input of the other role.
Later chapters specify a detailed set of responsibilities for each role, relative to the system-level
contracts.

5.1. Roles

This section describes the roles and responsibilities specific to the connector architecture.

5.1.1. Resource Adapter Provider

The resource adapter provider is an expert in the technology related to an EIS and is responsible for
providing a resource adapter for an EIS. Since this role is highly EIS specific, an EIS vendor typically
provides the resource adapter for its system.

A third-party vendor (who is not an EIS vendor) may also provide an EIS resource adapter and its
associated set of application development tools. Such a provider typically specializes in writing
resource adapters and related tools for a large number of EISs.

5.1.2. Application Server Vendor

The application server vendor provides an implementation of a Jakarta EE-compliant application
server that provides support for component based enterprise applications. A typical application server
vendor is an OS vendor, middleware vendor, or database vendor. The role of an application server
vendor is typically the same as that of a container provider.

The Jakarta EE platform specification (see Jakarta Platform, Enterprise Edition (Jakarta EE)
Specification, version 10) specifies requirements for a Jakarta EE platform provider.

5.1.3. Container Provider

The container provider is responsible for providing a container implementation for a specific type of
application component. For example, the container provider may provide a container for Jakarta
Enterprise Beans components. Each type of application component—]Jakarta Enterprise Bean, Jakarta
Servlet, Server Pages—has its own set of responsibilities for its container provider. The respective
specifications outline these responsibilities.

A container implementation typically provides the following functionality:

* It provides deployed application components with transaction and security management,
distribution of clients, scalable management of resources, and other services that are generally
required as part of a managed server platform.

Jakarta Connectors 19

5.1. Roles

* It provides application components with connectivity to an EIS by transparently managing security,
resources, and transactions using the system-level contracts with the EIS-specific resource adapter.

* It insulates application components from the specifics of the underlying system-level mechanisms
by supporting a simple, standard contract with the application component. Refer to the Jakarta
Enterprise Beans specification (Jakarta Enterprise Beans Specification, version 4.0) for more details
on the Jakarta Enterprise Beans component contract.

The expertise of the container provider is system-level programming, with its focus on the
development of a scalable, secure, and transaction-enabled container.

The container provider is also responsible for providing deployment tools necessary for the
deployment of application components and resource adapters. It is also required to provide runtime
support for the deployed application components.

The container provider typically provides tools that allow the system administrator to monitor and
manage a container and application components during runtime.

5.1.4. Application Component Provider

In the context of the connector architecture, the application component provider produces an
application component that accesses one or more EISs to provide its application functionality.

The application component provider is an application domain expert. In the case of application
components targeted towards integration with multiple EISs, various business tasks and entities are
implemented based on access to EIS data and functions.

The application component provider typically programs against easy-to-use Java abstractions
produced by application development tools. These Java abstractions are based on the Common Client
interface (CCI).

The application component provider is not required to be an expert at system level programming. The
application component provider does not program transactions, security, concurrency, or distribution,
but relies on a container to provide these services transparently.

The application component provider is responsible for specifying structural information for an
application component and its external dependencies. This information includes, for example, the
name and type of the connection factories, and security information.

The output of an application component provider is a Java™ Archive (JAR) file that contains the
application components and any additional Java classes required to connect to EISs.

5.1.5. Enterprise Tools Vendors

The application component provider relies on tools to simplify application development and EIS
integration. Since programming client access to EIS data and functions is a complex application
development task, an application development tool reduces the effort and complexity involved in this

20 Jakarta Connectors

5.1. Roles

task.
Enterprise tools serve different roles in the application development process, as follows:

* Data and function mining tool - enables application component providers to look at the scope and
structure of data and functions existing in an EIS

* Analysis and design tool - enables application component providers to design an application in
terms of EIS data and functions

» Code generation tool - generates Java classes for accessing EIS data and functions. A mapping tool
that bridges across two different programming models (object to relational or vice-versa) falls into
this category of tools.

» Application composition tool - enables application component providers to compose application
components from Java classes generated by a code generation tool. This type of tool typically uses
the JavaBeans™ component model to enhance the ease of programming and composition.

* Deployment tool - used by application component providers and deployers to set transaction,
security, and other deployment time requirements.

A number of these tools may be integrated together to form an end-to-end application development
environment.

In addition, various tools and middleware vendors offer EAI frameworks that simplify integration
across heterogeneous EISs.

5.1.6. Application Assembler

The application assembler combines various application components into a larger set of deployable
units. The input of the application assembler is one or more JAR files produced by an application
component provider and the output is one or more JAR files with a deployment descriptor. A
deployment descriptor may not be provided by the application assembler if metadata annotations (see
Metadata Annotations) are used to describe deployment information.

The application assembler is typically a domain expert who assembles application components to
produce an enterprise application. To achieve this goal, the application assembler takes application
components, possibly from multiple application component providers, and assembles these
components.

5.1.7. Deployer

The deployer takes one or more deployable units of application components, produced by the
application assembler or component provider, and deploys the application components in a target
operational environment. An operational environment is comprised of an application server and
multiple connected EISs.

The deployer is responsible for resolving all external dependencies declared by the application
component provider. For example, the deployer ensures that all connection factories used by the

Jakarta Connectors 21

5.2. Scenario: Integrated Purchase Order System

application components are present in an operational environment. To perform its role, the deployer
typically uses the application server-provided deployment tools.

The deployer is also responsible for the deployment of resource adapters. Since an operational
environment may include multiple EISs, the role of the deployer is more intensive and complex than
that in a non-EIS scenario. The deployer has to understand security, transaction, and connection
management-related aspects of multiple EISs that are configured in an operational environment.

5.1.8. System Administrator

The system administrator is responsible for the configuration and administration of a complete
enterprise infrastructure that includes multiple containers and EISs.

In an operational environment that has multiple EISs, the deployer should manage the operational
environment by working closely with the system administrators of respective EISs. This enables the
deployer to resolve deployment issues while deploying application components and resource adapters
in a target operational environment.

This chapter introduced the roles involved in the connector architecture. The later chapters specify
responsibilities for each role in more detail.

5.2. Scenario: Integrated Purchase Order System

This section describes a scenario that illustrates the use of the connector architecture. The following
description is kept at a high level. Specific scenarios related to transaction management, security,
connection management, and inbound communications are described in subsequent chapters.

The following diagram shows the different pieces that comprise this scenario:

5.2.1. Illustration of a Scenario Based on the Connector Architecture

22 Jakarta Connectors

5.2. Scenario: Integrated Purchase Order System

..

Container-Component
Contract
Purchase Order JEB

Common Client Interface

System Contracts
Resources Adapter
Application Server System Contracts
Resources Adapter

..

EIS Specific Interface

ERP System TP System

ERP Software Inc. is an enterprise system vendor that provides an enterprise resource planning (ERP)
system. ERP Software wants to integrate its ERP system with various application servers. It achieves
this goal by providing a standard resource adapter for its ERP system. The resource adapter for ERP
systems supports the standard inbound communication, transaction, connection management and
security contracts. The resource adapter also supports the Common Client Interface (CCI) as its client
API.

TPSoft Inc. is another enterprise system vendor that provides a transaction processing (TP) system.
TPSoft has also developed a standard resource adapter for its TP system. The resource adapter library
supports CCI as part of its implementation.

AppServer Inc. is a system vendor that has an application server product which supports the
development and deployment of component-based enterprise applications. This application server
product has an Jakarta Enterprise Beans container that provides deployment and runtime support for
Jakarta Enterprise Bean components. The application server supports the system-level contracts that
enable a resource adapter, which also supports these contracts, to plug into the application server and
provide bi-directional connectivity to the underlying EIS. The Jakarta Enterprise Beans container
insulates Jakarta Enterprise Bean components from the communication, transaction, security, and
connection management mechanisms required for connecting to the EIS.

Manufacturer Corp. is a big manufacturing firm that uses a purchase order processing system based
on the ERP system for its business processes. Recently, Manufacturer has acquired a firm that uses
TPSoft’s TP system for its purchase order processing. Manufacturer aims to integrate these two systems
together into a single integrated purchase order system. It requires a scalable, multi-user, secure,

Jakarta Connectors 23

5.3. Scenario: Business Integration

transaction-enabled integrated purchase order system that is not tied to a specific computing platform.
Manufacturer plans to deploy the middle-tier of this system on the application server from AppServer
Inc.

The MIS department of Manufacturer develops a PurchaseOrder Jakarta Enterprise Bean that provides
an integrated view of the two underlying purchase order systems. While developing PurchaseOrder
Jakarta Enterprise Bean, the bean provider does not program the transactions, security, connection
management or inbound communication mechanisms required for connectivity to the ERP and TP
systems; it relies on the Jakarta Enterprise Beans container and application server to provide these
services.

The bean provider uses an application programming model based on the CCI to access the business
objects and function modules for purchase order processing in the ERP system. The bean provider uses
a similar application programming model based on the CCI to access the purchase order processing
programs in the TP system.

The MIS department of Manufacturer assembles an integrated web-based purchase order application
using PurchaseOrder Jakarta Enterprise Bean with other types of application components, such as
Jakarta Server Pages and Jakarta Servlets.

The MIS department installs and configures the application server, ERP, and TP system as part of its
operational environment. It then deploys the integrated purchase order application on this operational
environment. As part of the deployment, the MIS department configures the operational environment
based on the deployment requirements for the various application components that have been
assembled into the integrated enterprise application.

After deploying and successfully testing the integrated purchase order system, the MIS department
makes the system available for other departments to use.

5.3. Scenario: Business Integration

This scenario illustrates the use of the connector architecture in a business integration scenario.

Wombat Systems is a manufacturing firm that aims to adopt an e-business strategy. Wombat has huge
existing investments in its EIS systems. The EISs include ERP systems, mainframe transaction
processing systems, and message providers.

Wombat requires to interact with its various partners. In order to do this, it requires support for
different interaction mechanisms. It also requires a mechanism to involve all its EIS systems in the
interaction. Further, it requires an application sever to host its business applications which participate
in the various interactions.

Wombat buys a Jakarta EE based application server from EComm, Inc. to host its business applications
which interact with its EISs and its various partners. The application server supports the connector
architecture contracts which make it possible to use appropriate resource adapters to drive
interactions with its partners and its EISs.

24 Jakarta Connectors

5.3. Scenario: Business Integration

The connector architecture enables Wombat to integrate its existing infrastructure with the application
server. Wombat buys off-the-shelf resource adapters for its existing set of EISs and to support
interactions with its partners and uses them to integrate its business applications (deployed on the
application server).

5.3.1. Connector Architecture Usage in Business Integration Scenario

Firm: Wombat Corp Supplier A

..

Web Clients
App Server Based on
Java based Jakarta EE
Application

Clients
XML over HTTP/s

Resource Adapters

Messaging System

External Client Applications

Internal Client Applications

..

Jakarta Connectors 25

6.1. Overview

Chapter 6. Lifecycle Management

This chapter specifies a contract between an application server and a resource adapter that allows an
application server to manage the lifecycle of a resource adapter. This contract provides a mechanism
for the application server to bootstrap a resource adapter instance during its deployment or
application server startup, and to notify the resource adapter instance during its undeployment or
during an orderly shutdown of the application server.

6.1. Overview

A resource adapter is a system component which is deployed in an application server. When a
resource adapter is deployed, or during application server startup, an application server requires to
bootstrap an instance of the resource adapter in its address space. When a resource adapter is
undeployed, or during application server shutdown, the application server requires a mechanism to
notify the resource adapter instance to stop functioning so that it can be safely unloaded.

The lifecycle management contract provides such a mechanism for an application server to manage
the lifecycle of a resource adapter instance. This allows an application server to bootstrap a resource
adapter instance during resource adapter deployment or application server startup and also to expose
some of its useful facilities to the resource adapter instance. It also provides a mechanism to notify the
resource adapter instance while it is undeployed or during an orderly shutdown of the application
server.

6.2. Goals

* Provide a mechanism for an application server to manage the lifecycle of a resource adapter
instance.

6.3. Lifecycle Management Model

Lifecycle Management Contract (Interfaces)

0000

Lifecycle Management (Object Diagram)

26 Jakarta Connectors

6.3. Lifecycle Management Model

Application Server Resource Adapter

start(BootstrapContext)
‘ Resource Adapter
stop(

getWorkManager()
BootstrapContext ‘ <
WorkManager ’

package jakarta.resource.spi;
import jakarta.resource.spi.work.WorkManager;
public interface ResourceAdapter {

void start(BootstrapContext) // startup notification
throws ResourceAdapterInternalException;

void stop(); // shutdown notification
... // other operations

public interface BootstrapContext {

WorkManager getWorkManager();
... // other operations

An application server implements the BootstrapContext and WorkManager interfaces. A resource
adapter implements the ResourceAdapter interface.

6.3.1. ResourceAdapter JavaBean and Bootstrapping a Resource Adapter
Instance

The implementation class name of the ResourceAdapter interface is specified in the resource adapter
deployment descriptor or through the Connector annotation described in @Connector. The
ResourceAdapter class must be a JavaBean. Refer to JavaBean Requirements. During resource adapter
deployment, the resource adapter deployer creates a ResourceAdapter JavaBean and configures it with
the appropriate properties.

When a resource adapter is deployed, or during application server startup, an application server

Jakarta Connectors 27

6.3. Lifecycle Management Model

bootstraps an instance of the resource adapter in its address space. In order to bootstrap a resource
adapter instance, the application server must use the configured ResourceAdapter JavaBean and call
its start method. The start method call is a startup notification from the application server, and this
method is called by an application server thread.

During the start method call the ResourceAdapter JavaBean is responsible for initializing the resource
adapter instance. This may involve creating resource adapter instance specific objects, creating
threads (refer to Work Management), and setting up network endpoints. A ResourceAdapter JavaBean
represents exactly one functional resource adapter unit or instance. The application server must
instantiate exactly one ResourceAdapter JavaBean per functional resource adapter instance. The
application server must create at least one functional resource adapter instance per resource adapter
deployment. An application server may create more than one functional resource adapter instance per
resource adapter deployment, in order to create replicas of a single functional resource adapter
instance on multiple Java™ Virtual Machines (2). In general, however, there should be just one
functional resource adapter instance per deployment.

The application server is allowed to have multiple instances of a ResourceAdapter JavaBean active
simultaneously, in the same JVM™ instance, provided the instances are not equal. Their equality is
determined using the equals method, and therefore, the ResourceAdapter JavaBean is required to
implement the equals method.

During the start method call, an application server must provide a BootstrapContext instance
containing references to some of the application server facilities (for example, WorkManager) for use
by the resource adapter instance. The application server facilities exposed through the
BootstrapContext instance may be used by the resource adapter instance during its lifetime.

During the start method call, the resource adapter instance initializes itself, and may use the
WorkManager to submit Work instances for execution (see Work Management). The start method call
should return in a timely manner, and should avoid blocking calls, such as use of doWork method call
on the WorkManager instance. The application server may throw a WorkRejectedException in
response to any or all doWork method calls on the WorkManager instance, in order to enforce that a
start method call does not block. Resource adapter implementations are strongly recommended to use
startWork and scheduleWork methods on the WorkManager , instead of the doWork method.

Any exception thrown during the start method call indicates an error condition, and the attempt by the
application server to create a resource adapter instance fails. A future version of the specification may
add a two-phase startup procedure.

A resource adapter instance at runtime may contain several objects that may be created and discarded
during its lifetime. Such objects include ManagedConnectionFactory JavaBean (refer to Connection
Management), ActivationSpec JavaBean (refer to Message Inflow), various connection objects, resource
adapter private objects, and other resource adapter specific objects that are exposed to applications.

The ResourceAdapter JavaBean represents a resource adapter instance and contains the configuration
information pertaining to that resource adapter instance. This configuration information may also be
used as global defaults for ManagedConnectionFactory and ActivationSpec JavaBeans. That is, when

28 Jakarta Connectors

6.3. Lifecycle Management Model

ManagedConnectionFactory or ActivationSpec JavaBeans are created they may inherit the global
defaults (ResourceAdapter JavaBean configuration information), which make it easier to configure
them.

A resource adapter instance may provide bi-directional connectivity to multiple EIS instances. A
ManagedConnectionFactory JavaBean can be used to provide outbound connectivity to a single EIS
instance. An ActivationSpec JavaBean can be used to provide inbound connectivity from an EIS
instance. A resource adapter instance may contain several such ManagedConnectionFactory and
ActivationSpec JavaBeans. The following figure describes the association between a resource adapter
instance and its various ManagedConnectionFactory and ActivationSpec JavaBeans.

Resource Adapter Instance (Composition)

Resource adapter instance
(within an application server)

Resource Adapter
JavaBean (exactly one)

..

ManagedConnectionFactory
Application < R JavaBean e >

Outbound Communication

ManagedConnectionFactory
Application QR avaBean ceee
pp

...

Inbound Communication

..

ManagedConnectionFactory
JavaBean

ManagedConnectionFactory
javaBean e > EIS Instance

...

Application < KR

Application < RS

.
.
.
.

6.3.2. ManagedConnectionFactory JavaBean and Outbound Communication

A ManagedConnectionFactory JavaBean represents outbound connectivity information to an EIS
instance from an application by way of a specific resource adapter instance. This contains the
configuration information pertaining to outbound connectivity to an EIS instance. Refer to Connection
Management for more details on the ManagedConnectionFactory JavaBean.

Jakarta Connectors 29

6.3. Lifecycle Management Model

When a ManagedConnectionFactory JavaBean is created, it may inherit the ResourceAdapter JavaBean
(which represents the resource adapter instance) configuration information, and overrides specific
global defaults, if any, and may add other configuration information specific to outbound connectivity.

That is, in the case of outbound communication, the outbound connectivity configuration is a union of
ResourceAdapter JavaBean and ManagedConnectionFactory JavaBean configuration, with the
intersecting configuration properties based on the ManagedConnectionFactory JavaBean settings.

Outbound communication is initiated by an application and the communication occurs in the context
of an application thread, even though resource adapter threads may be involved in the interaction.
Note, a resource adapter may use the work management contract (refer to Work Management) to
request threads to do work.

import jakarta.resource.spi.ResourceAdapterAssociation;
import jakarta.resource.spi.ManagedConnectionFactory;

public class ManagedConnectionFactoryImpl
implements ManagedConnectionFactory,
ResourceAdapterAssociation {

ResourceAdapter getResourceAdapter();
void setResourceAdapter(ResourceAdapter) throws ResourceException;

... // other methods

The ResourceAdapterAssociation interface specifies the methods to associate a
ManagedConnectionFactory JavaBean with a ResourceAdapter JavaBean.

Prior to using a ManagedConnectionFactory JavaBean, the application server must create an
association between the ManagedConnectionFactory JavaBean and a ResourceAdapter JavaBean, by
calling the setResourceAdapter method on the ManagedConnectionFactory JavaBean. A successful
association is established only when the setResourceAdapter method on the
ManagedConnectionFactory JavaBean returns without throwing an exception.

The setResourceAdapter method on the ManagedConnectionFactory JavaBean must be called exactly
once; that is, the association must not change during the lifetime of a ManagedConnectionFactory
JavaBean.

6.3.3. ActivationSpec JavaBean and Inbound Communication

An ActivationSpec JavaBean represents inbound connectivity information from an EIS instance to an
application by way of a specific resource adapter instance. This contains the configuration information
pertaining to inbound connectivity from an EIS instance. Refer to Message Inflow for more details on

30 Jakarta Connectors

6.3. Lifecycle Management Model

the ActivationSpec JavaBean.

When an ActivationSpec JavaBean is created, it may inherit the ResourceAdapter JavaBean (which
represents the resource adapter instance) configuration information, and overrides specific global
defaults, if any, and may add other configuration information specific to inbound connectivity.

That is, in the case of inbound communication, the inbound connectivity configuration is a union of
ResourceAdapter JavaBean and ActivationSpec JavaBean configuration, with the intersecting
configuration properties based on the ActivationSpec JavaBean settings.

Inbound communication is initiated by an EIS instance and the communication occurs in the context of
a resource adapter thread. There are no application threads involved. Note, a resource adapter may
use the work management contract (refer to Work Management) to request threads to do work.

import jakarta.resource.spi.ActivationSpec;
// ActivationSpec interface extends ResourceAdapterAssociation interface.
public class ActivationSpecImpl implements ActivationSpec {
ResourceAdapter getResourceAdapter();
void setResourceAdapter(ResourceAdapter) throws ResourceException;

... // other methods

The ResourceAdapterAssociation interface specifies the methods to associate an ActivationSpec
JavaBean with a ResourceAdapter JavaBean.

Prior to using an ActivationSpec JavaBean, the application server must create an association between
the ActivationSpec JavaBean and a ResourceAdapter JavaBean, by calling the setResourceAdapter
method on the ActivationSpec JavaBean. A successful association is established only when the
setResourceAdapter method on the ActivationSpec JavaBean returns without throwing an exception.

The setResourceAdapter method on the ActivationSpec JavaBean must be called exactly once; that is,
the association must not change during the lifetime of an ActivationSpec JavaBean.

6.3.4. Resource Adapter Shutdown Procedure

The following are some likely situations during which an application server would shutdown a
resource adapter instance:

* The application server is being shutdown.

* The resource adapter is being undeployed.

Jakarta Connectors 31

6.3. Lifecycle Management Model

Irrespective of what causes a resource adapter instance to be shutdown, the application server must
use the following two phases to shutdown a resource adapter instance.

6.3.4.1. Phase One

Before calling the stop method on the ResourceAdapter JavaBean, the application server must ensure
that all dependant applications using the specific resource adapter instance are stopped. This includes
deactivating all message endpoints receiving messages by way of the specific resource adapter. Note,
however, since dependant applications typically cannot be stopped until they are undeployed, the
application server may have to delay stopping the resource adapter instance, until all such dependant
applications are undeployed.

Completion of phase one guarantees that application threads will not use the resource adapter
instance, even though the resource adapter instance specific objects may still be in the memory heap.
This ensures that all application activities including transactional activities are completed.

Thus, phase one ensures that even if a resource adapter instance does not properly shutdown during
phase two, the resource adapter instance is practically unusable.

6.3.4.2. Phase Two

The application server calls the stop method on the ResourceAdapter JavaBean to notify the resource
adapter instance to stop functioning so that it can be safely unloaded. This is a graceful shutdown
notification from the application server, and this method is called by an application server thread.

The ResourceAdapter JavaBean is responsible for performing an orderly shutdown of the resource
adapter instance during the stop method call. This may involve closing network endpoints,
relinquishing threads, releasing all active Work instances, allowing resource adapter internal in-flight
transactions to complete if they are already in the process of doing a commit, and flushing any cached
data to the EIS.

The resource adapter instance is considered fully functional until the application server calls the stop
method on the ResourceAdapter JavaBean.

Any unchecked exception thrown by the stop method call does not alter the processing of the
application server shutdown or resource adapter undeployment that caused the stop method call. The
application server may log the exception information for error reporting purposes.

Note, it is possible for a resource adapter instance to become non-functional during its lifetime even
before the stop method is called, due to EIS failure or other reasons. In such cases, the resource
adapter instance should throw exceptions to indicate the failure condition, when it is accessed by an
application (during outbound communication) or the application server.

A future version of the specification may add a forced shutdown method in addition to the current
graceful stop method.

32 Jakarta Connectors

6.3. Lifecycle Management Model

6.3.5. Requirements

* The application server must use a new ResourceAdapter JavaBean for managing the lifecycle of
each resource adapter instance and must discard the ResourceAdapter JavaBean after its stop
method has been called. That is, the application server must not reuse the same ResourceAdapter
JavaBean object to manage multiple instances of a resource adapter, since the ResourceAdapter
JavaBean object may contain resource adapter instance specific state information.

* The application server must call the start method on the ResourceAdapter JavaBean (in order to
create a functional resource adapter instance), before accessing other methods on the
ResourceAdapter JavaBean instance or before using other objects that belong to the same resource
adapter instance.

* The application server thread which calls the start and the stop method on the ResourceAdapter
JavaBean executes in an unspecified context. However, the application server thread must have at
least the same level of security permissions as that of the resource adapter instance.

Resource Adapter Lifecycle (State Diagram)

Unconfigured The resource adapter deployer N Configured
resource adapter . . 7 resource adapter
configures the various JavaBean classes
Resourse
Adapter
N\
deploy Deployment Resource adapter
............. > Tool is deployed in the
undeploy application server
Resource v
Adapter
Deployer Application
Server
Application server calls start method N)
on the Resource Adapter JavaBean
Functional resource < Non-functional
adapter instance AN resource adapter
7
Application server calls stop method
on the Resource Adapter JavaBean
. . W
The start method of the Resource Adapter JavaBean is called each time a
resource adapter instance is created. This may be during resource adapter .
deployment, application server start, or other situations.

The stop method of the Resource Adapter JavaBean is called each time a
resource adapter instance is removed. This may be during resource
adapter undeployment, application server shutdown, or other situations.

Jakarta Connectors 33

6.3. Lifecycle Management Model

6.3.6. Resource Adapter Implementation Guidelines

The ResourceAdapter JavaBean should be treated as a central authority or registry for resource
adapter instance specific information, and it should have access to the overall state of the resource
adapter instance (network endpoints, etc.). This helps in the manageability of the resource adapter
instance, and in performing an orderly shutdown.

Some conventions to follow:

* Any resource adapter specific object (for example, ManagedConnectionFactory JavaBean,
ActivationSpec JavaBean, or others) which creates network endpoints should register them with
the ResourceAdapter JavaBean.

* The resource adapter threads should periodically scan the ResourceAdapter JavaBean state and
behave accordingly. It is desirable that such threads avoid boundless blocking on I/O calls, and
instead use a bounded blocking duration. This helps in resource adapter shutdown, and also
potentially avoids deadlock situations during shutdown.

The above conventions enable a ResourceAdapter JavaBean to effectively manage the resource adapter
instance and to perform an orderly shutdown of the resource adapter instance.

6.3.7. JavaBean Configuration and Deployment

There is at most one ResourceAdapter JavaBean instance per resource adapter instance. But there can
be many ManagedConnectionFactory, ActivationSpec or administered object instances (Administered
Objects) per resource adapter instance.

The ResourceAdapter JavaBean instance is created and configured during resource adapter
deployment. The ManagedConnectionFactory, ActivationSpec and administered object instances are
created and configured during the lifetime of a resource adapter instance.

At runtime, the resource adapter internally uses a union of the configured ResourceAdapter and
ManagedConnectionFactory JavaBean properties, to represent outbound communication configuration.

Similarly, at runtime, the resource adapter internally uses a union of the configured ResourceAdapter
and ActivationSpec JavaBean properties, to represent inbound communication configuration.

6.3.7.1. ResourceAdapter JavaBean Instance Configuration

* Create a ResourceAdapter JavaBean instance. This will initialize the instance with the defaults
specified by way of the JavaBean mechanism.

* Apply the ResourceAdapter class configuration properties specified in the resource adapter
deployment descriptor, on the ResourceAdapter instance. This may override some of the default
values specified through the JavaBean mechanism. The application server is required to merge
values specified by way of annotations and deployment descriptors as specified in Deployment
Descriptors and Annotations, before applying the ResourceAdapter class configuration properties.

34 Jakarta Connectors

6.3. Lifecycle Management Model

* The ResourceAdapter deployer may further override the values of the ResourceAdapter instance
before deployment.

6.3.7.2. Resource Adapter Deployment

The ResourceAdapter instance property values may be stored separately and reused later while
configuring ManagedConnectionFactory, ActivationSpec, or administered object instances.

6.3.7.3. ManagedConnectionFactory JavaBean Instance Configuration

* Create a ManagedConnectionFactory JavaBean instance. This will initialize the instance with the
defaults specified by way of the JavaBean mechanism.

* Apply the ResourceAdapter instance property values, that were stored earlier, on the
ManagedConnectionFactory instance. Note, that the ManagedConnectionFactory JavaBean may
have none, some or all of the properties of the ResourceAdapter JavaBean.

* Apply the ManagedConnectionFactory class configuration properties specified in the resource
adapter deployment descriptor, on the ManagedConnectionFactory instance.

» The application server is required to merge values specified by way of annotations and deployment
descriptors as specified in Deployment Descriptors and Annotations, before applying the
ManagedConnectionFactory class configuration properties.

* The ManagedConnectionFactory deployer may further override the values of the
ManagedConnectionFactory instance before deployment.

At runtime, the resource adapter internally uses a union of the configured ResourceAdapter and
ManagedConnectionFactory JavaBean properties, to represent outbound communication
configuration. Note, the ManagedConnectionFactory instance and the ResourceAdapter instance may
have intersecting property names. In such a situation, the wvalues specified in the
ManagedConnectionFactory instance takes precedence.

6.3.7.4. ActivationSpec JavaBean Instance Configuration

* Create an ActivationSpec JavaBean instance. This will initialize the instance with the defaults
specified by way of the JavaBean mechanism.

* Apply the ResourceAdapter instance property values, that were stored earlier, on the
ActivationSpec instance. Note, that the ActivationSpec JavaBean may have none, some, or all of the
properties of the ResourceAdapter JavaBean.

* Apply the ActivationSpec class configuration properties specified in the application deployment
descriptor, on the ActivationSpec instance.

» The application server is required to merge values specified by way of annotations and deployment
descriptors as specified in Deployment Descriptors and Annotations, before applying the
ActivationSpec class configuration properties.

* The ActivationSpec deployer may further override the values of the ActivationSpec instance before
deployment.

Jakarta Connectors 35

6.3. Lifecycle Management Model

At runtime, the resource adapter internally uses a union of the configured ResourceAdapter and
ActivationSpec JavaBean properties, to represent inbound communication configuration. Note, the
ActivationSpec instance and the ResourceAdapter instance may have intersecting property names. In
such a situation, the values specified in the ActivationSpec instance takes precedence.

6.3.7.5. JavaBean Validation

The Jakarta Bean Validation specification (see Jakarta Bean Validation Specification, version 3.0)
defines “a metadata model and API for JavaBean validation. The default metadata source is
annotations, with the ability to override and extend the meta-data through the use of XML validation
descriptors.”

The JavaBeans provided by the resource adapter implementation, like ResourceAdapter
ManagedConnectionFactory etc, may use the annotations or the XML validation descriptor facilities
defined by the Jakarta Bean Validation specification to express their validation requirements of its
configuration properties to the application server. A constraint annotation, can be applied to a
JavaBean type, on any of the type’s fields or on any of the JavaBeans-compliant properties.The use of
Jakarta Bean Validation constraint annotations by the resource adapter implementation as a self-
validation check behavior is optional.

The Jakarta Bean Validation specification defines a set of standard built-in constraints. The resource
adapter implementation is encouraged to use them instead of redefining custom annotations for the
same use cases. The resource adapter implementation may (but is not limited to) use the Jakarta Bean
Validation facilities for the following use cases:

* Range or limits specification. To ensure that the value provided by a deployer for a configuration
property falls within prescribed limits. The resource adapter implementation may use @Min ,
@Max , @Size constraints for this purpose.

* Mandatory attributes. To require the deployer to provide a value for a configuration property.
The resource adapter implementation may use the @NotNull constraint for this use case.

In the Jakarta EE 9 environment, as specified in the Jakarta EE platform specification, the Jakarta Bean
Validation facilities are available. The application server must check the validity of the configuration
settings provided by the deployer for a JavaBean, using the capabilities provided by the Jakarta Bean
Validation specification. This validation must be performed before using the JavaBean. This helps to
catch configuration errors earlier on without having to wait until the JavaBean is put to use. As the
application server may check the validation of the configuration settings at deployment time and
runtime, the constraint validation implementation must not make any assumptions of the availability
of a live resource adapter instance. The application server must support the decoration of the
following JavaBeans with constraint annotations:

* ResourceAdapter
* ManagedConnectionFactory

 ActivationSpec

36 Jakarta Connectors

6.3. Lifecycle Management Model

* Administered Objects

The application server must, by default, target the jakarta.validation.groups.Default group for
validation. The application server must validate the JavaBean by obtaining a Validator instance from
its ValidatorFactory and invoking the validate method with the targeted groups. If the set of
ConstraintViolation objects returned by the validate method is not empty, the application server must
fail validation by throwing the jakarta.validation.ConstraintValidationException containing a reference
to the returned set of ConstraintViolation objects, and must not put the JavaBean in use. The
application server must treat all JavaBean properties as “reachable” and “cascadable” as defined by
the BeanValidation Specification. For more details on reachability and cascaded validation, see Section
3.5 of the Jakarta Bean Validation Specification, version 3.0.

Application server configuration tools and third-party tools are recommended to leverage the
constraint metadata request API defined in the Jakarta Bean Validation specification to provide a
richer interaction model during configuration of the JavaBeans.

6.3.7.6. Configuration Property Attributes

Dynamic Reconfigurable Configuration Properties

Configuration properties whose values could be configured dynamically during the lifetime of the
JavaBean are referred to as dynamically reconfigurable configuration properties. A resource adapter
may indicate that a configuration property is dynamically reconfigurable through the config-property-
supports-dynamic-updates attribute in the deployment descriptor (see Resource Adapter XML Schema
Definition) or the supportsDynamicUpdates annotation element in the ConfigProperty annotation (see
@ConfigProperty).

Neither the application server nor the resource adapter must support the dynamic reconfiguration of
configuration properties. If an application server supports this feature and the resource adapter
employs JavaBean Validation (see JavaBean Validation), the application server must perform JavaBean
Validation after reconfiguring all the modified values of the JavaBean. When the JavaBean is validated,
the resource adapter can deduce that the reconfiguration has been completed by the deployer or
administrator.

Invalid reconfiguration of the state of a JavaBean by an application server may be indicated by the
resource adapter through the following means:

Throwing an exception when the field is updated

For configuration properties that can only be validated based on the state of other configuration
properties, throwing an exception during the validation phase.

Confidential Properties

Certain configuration properties of a JavaBean, such as Password (see Standard Properties for more
information on Password), may be confidential and must not be presented as clear text in
configuration tools. The resource adapter may indicate such properties as “Confidential Properties”

Jakarta Connectors 37

6.3. Lifecycle Management Model

through the config-property-confidential attribute in the deployment descriptor (see Resource Adapter
XML Schema Definition) or the confidentialProperty annotation element in the ConfigProperty
annotation (see @ConfigProperty). The application server’s configuration tool may use this attribute to
use special visual aids denoting confidentiality.

6.3.7.7. Resource Adapter Implementation Guidelines

A resource adapter implementation may choose to use common properties, that is, a
ManagedConnectionFactory or an ActivationSpec JavaBean, may contain some or all of the properties
of the ResourceAdapter JavaBean. The choice is up to the resource adapter implementation.

In general, there is no need for common properties, since these various objects are associated at
runtime with the ResourceAdapter JavaBean. However, there may be situations, for example, a
ManagedConnectionFactory JavaBean may need to override the ResourceAdapter JavaBean values in
order to successfully connect to a different EIS. In such a scenario, providing common properties
between the ResourceAdapter and ManagedConnectionFactory JavaBeans, allows the
ManagedConnectionFactory deployer to override the ResourceAdapter property values and configure
the ManagedConnectionFactory appropriately.

6.3.8. Lifecycle Management in a Non-Managed Environment

Although the lifecycle management contract is primarily intended for a managed environment, it may
still be used in a non-managed environment provided that the application that bootstraps a resource
adapter instance is capable of managing its lifecycle.

6.3.9. A Sample Resource Adapter Implementation

38 Jakarta Connectors

Sample Resource Adapter
package com.xyz.adapter;

import jakarta.resource.spi.ResourceAdapter;
import jakarta.resource.spi.BootstrapContext;
import jakarta.resource.spi.work.*;

public class MyResourceAdapterImpl implements ResourceAdapter {

void start(BootstrapContext serverCtx) {
// 1. setup network endpoints

// 2. get WorkManager reference
WorkManager wm = server(Ctx.getWorkManager();

// 3. provide Work objects to WorkManager
for (i =0; 1 <10; i++) {
Work work = new MyWork(...);
try {
wm. startWork(work);
} catch (WorkException we) {
// handle the exception

}
}

void stop() {
// release Work instances, do cleanup and return.
}
}

public class MyWork implements Work {
void release() {

// set a flag to hint the Work instance to complete.
// Note, the calling thread is different from

// the active thread in which this instance is executing.

}

void run() {
// do work (call application components, monitor
// network ports, etc.).

6.3. Lifecycle Management Model

Jakarta Connectors 39

6.3. Lifecycle Management Model

Lifecycle Management Model (Sequence Diagram)

Work

Jakarta EE WorkManager BootstrapContext ResourceAdapter

(from app server) (from app server) (from adapter) (from adapter)

app server

Application Server Startup

1. create an instance

2. create an instance (passhandle to WorkManager, etc.)

Resource adapter startup and bootstrap procedure. This may be when a resource
adapter is deployed or during server startup for those resource adapter instances

which had previously been deployed.

A\ 4

L 5. getWorkManager()

v

6. create Work instances

7. submit Work instances for execution
.

N

A\ 4

During runtime, the Resource adapter may submit more Work instances and use
dispatch contract to dispatch calls to application components, etc.

Resource adapter undeployment / app server shutdown

9. stop()

A\ 4

40 Jakarta Connectors

7.1. Overview

Chapter 7. Connection Management

This chapter specifies the connection management contract between an application server and a
resource adapter. It introduces the concepts and mechanisms relevant to this contract, and delineates
the responsibilities of the roles of the resource adapter provider and application server vendor in
terms of their system-level support for the connection management contract. To complete the
description of the connection management contract, this chapter also refers to the responsibilities of
the application component provider and deployer. The chapter includes scenarios to illustrate the
connection management contract.

7.1. Overview

An application component uses a connection factory to access a connection instance, which the
component then uses to connect to the underlying EIS. A resource adapter acts as a factory of
connections. Examples of connections include database connections, Jakarta Messaging connections,
and SAP R/3 connections.

Connection pooling manages connections that are expensive to create and destroy. Connection pooling
of expensive connections leads to better scalability and performance in an operational environment.
The connection management contract provides support for connection pooling.

7.2. Goals

The connection management contract has been designed with the following goals:

* To provide a consistent application programming model for connection acquisition for both
managed and non-managed (two-tier) applications.

* To enable a resource adapter to provide a connection factory and connection interfaces based on
the CCI specific to the type of resource adapter and EIS. This enables JDBC drivers to be aligned
with the connector architecture with minimum impact on the existing JDBC APIs.

* To provide a generic mechanism by which an application server can provide different
services—transactions, security, advanced pooling, error tracing/logging—for its configured set of
resource adapters.

» To provide support for connection pooling.

The goal of the Jakarta Connector Architecture is to enable efficient, scalable, and extensible
connection pooling mechanisms, not to specify a mechanism or implementation for connection
pooling. The goal is accomplished by defining a standard contract for connection management with the
providers of connections—that is, resource adapters. An application server should use the connection
management contract to implement a connection pooling mechanism in its own implementation-
specific way.

Jakarta Connectors 41

7.3. Architecture: Connection Management

7.3. Architecture: Connection Management

The connection management contract specifies an architected contract between an application server
and a resource adapter. This connection management contract is shown with bold flow lines in
Architecture Diagram: Managed Application scenario. It includes the set of interfaces shown in the
architecture diagram.

7.3.1. Overview: Managed Application Scenario

The application server uses the deployment information specified by way of the deployment descriptor
mechanism (specified in section Requirements) and metadata annotations (specified in Deployment
Descriptors and Annotations) to configure the resource adapter in the operational environment.

The resource adapter provides connection and connection factory interfaces. A connection factory acts
as a factory for EIS connections. For example, javax.sql.DataSource and java.sql.Connection interfaces
are JDBC-based interfaces for connecting to a relational database.

The CCI (specified in Common Client Interface) defines jakarta.resource.cci.ConnectionFactory and
jakarta.resource.cci.Connection as interfaces for a connection factory and a connection, respectively.

The application component does a lookup of a connection factory in the Java Naming and Directory
Interface™ (JNDI) name space. It uses the connection factory to get a connection to the underlying EIS.
The connection factory instance delegates the connection creation request to the ConnectionManager
instance.

The ConnectionManager enables the application server to provide different quality-of-services in the
managed application scenario. These quality-of-services include transaction management, security,
error logging and tracing, and connection pool management. The application server provides these
services in its own implementation-specific way. The connector architecture does not specify how the
application server implements these services.

The ConnectionManager instance , on receiving a connection creation request from the connection
factory , does a lookup in the connection pool provided by the application server. If there is no
connection in the pool that can satisfy the connection request, the application server uses the
ManagedConnectionFactory interface (implemented by the resource adapter) to create a new physical
connection to the underlying EIS. If the application server finds a matching connection in the pool, it
uses the matching ManagedConnection instance to satisfy the connection request.

If a new ManagedConnection instance 1is created, the application server adds the new
ManagedConnection instance to the connection pool.

The application server registers a ConnectionEventListener with the ManagedConnection instance. This
listener enables the application server to get event notifications related to the state of the
ManagedConnection instance. The application server uses these notifications to manage connection
pooling, manage transactions, cleanup connections, and handle any error conditions.

42 Jakarta Connectors

7.4. Application Programming Model

The application server uses the ManagedConnection instance to get a connection instance that acts as
an application-level handle to the wunderlying physical connection. An instance of type
jakarta.resource.cci.Connection is an example of such a connection handle. An application component
uses the connection handle to access EIS resources.

The resource adapter implements the XAResource interface to provide support for transaction
management. The resource adapter also implements the LocalTransaction interface so that the
application server can manage transactions internal to a resource manager. The chapter on
transaction management describes this transaction management contract between the application
server (and its transaction manager) and the resource adapter (and its underlying resource manager).

Architecture Diagram: Managed Application scenario

----- Architected Contract
Application Component
e Implementation Specific

Application Server

Resource Adapter

ConnectionManager ConnectionFactory Connection
.
.
.
.

v

SecurityService
Manager

Pool ManagedConnectionFactory

WA ManagedConnection
Transaction
Manager

N

LocalTransaction

XAResource

ConnectionEventListener

v v

Enterprise Information System (EIS)

7.4. Application Programming Model

The application programming model for getting an EIS connection is similar across both managed
(application server based) and non-managed scenarios. The following sections explain a typical
application programming model scenario.

Jakarta Connectors 43

7.4. Application Programming Model

7.4.1. Managed Application Scenario
The following steps are involved in a managed scenario:

1 The application assembler or component provider specifies connection factory requirements for an
application component using a deployment descriptor mechanism. For example, a bean provider
specifies the following elements in the deployment descriptor for a connection factory reference. Note
that the connection factory reference is part of the deployment descriptor for Jakarta Enterprise Bean
components and not the resource adapter. Refer Jakarta Enterprise Beans specification (see Jakarta
Enterprise Beans Specification, version 4.0) for details on the deployment mechanism for Jakarta
Enterprise Bean components:

* res-ref-name: eis/MyEIS

* res-type: jakarta.resource.cci.ConnectionFactory

* res-auth: Application or Container
2 During resource adapter deployment, the deployer sets the configuration information (example:
server name, port number) for the resource adapter. The application server uses a configured resource

adapter to create physical connections to the underlying EIS. Refer to API Requirements for details on
packaging and deployment of a resource adapter.

3 The application component looks up a connection factory instance in the component’s environment
using the JNDI interface.

// obtain the initial INDI Naming context
Context initctx = new InitialContext();

// perform INDI lookup to obtain the connection factory
jakarta.resource.cci.ConnectionFactory cxf =
(jakarta.resource.cci.ConnectionFactory)
initctx.lookup(“java:comp/env/eis/MyEIS”);

The JNDI name passed in the method NamingContext.lookup is the same as that specified in the res-ref-
name element of the deployment descriptor. The JNDI lookup results in a connection factory instance
of type jakarta.resource.cci.ConnectionFactory as specified in the res-type element.

4 The application component invokes the getConnection method on the connection factory to get an EIS
connection. The returned connection instance represents an application-level handle to an underlying
physical connection.

An application component obtains multiple connections by calling the method getConnection on the
connection factory multiple times.

jakarta.resource.cci.Connection cx = cxf.getConnection();

5 The application component uses the returned connection to access the underlying EIS by way of the

44 Jakarta Connectors

7.4. Application Programming Model

resource adapter. Common Client Interface specifies in detail the application programming model for
EIS access.

The JNDI context of an accessing application is available to a resource adapter
through the application thread that uses its connection object. The resource adapter
may use the JNDI context to access other resources.

6 After the component finishes with the connection, it closes the connection using the close method on
the Connection interface.

cx.close();

7 If an application component fails to close an allocated connection after its use, that connection is
considered an unused connection. The application server manages the cleanup of unused connections.
When a container terminates a component instance, the container cleans up all connections used by
that component instance. Refer section ManagedConnection and Scenario: Connection Event
Notifications and Connection Close for details on the cleanup of connections.

7.4.2. Non-Managed Application Scenario

In a non-managed application scenario, the application developer follows a similar programming
model to the managed application scenario. The non-managed case involves looking up of a connection
factory instance, getting an EIS connection, using the connection for EIS access, and finally closing the
connection.

7.4.3. Guidelines

Connection handles are application level handles to underlying physical connections and are light-
weight objects, especially when dissociated from the ManagedConnection . Creation of a connection
handle does not necessarily result in the creation of a new physical connection to the EIS. The
ManagedConnection , which represents the actual underlying physical connection, should maintain
any session or transaction state data associated with that connection to the EIS. An application
component may not derive much benefit from caching these handles, although this is allowed in this
specification. Application components are recommended to obtain and cache the Connection Factory
objects instead. For more information, see ConnectionFactory and Connection.

An application component is recommended to obtain a connection handle from the connection factory,
use the connection handle to interact with the EIS by way of the resource adapter, and close the
connection handle after finishing with it.

Jakarta Connectors 45

7.5. Interface/Class Specification

//recommended: connection handle creation, use and close
Connection con = null;
try {

con = cf.getConnection();

//use the con handle to interact with the EIS
} finally {

if (con != null){

con.close();

The application component is recommended to explicitly close the connection handle as soon as the
handle has been used and is not required later. This reduces the possibility of connection leaks and
enhances the application server’s ability to pool physical connections to the EIS (see Connection Pool
Implementation).

7.5. Interface/Class Specification

This section specifies the Java classes and interfaces defined as part of the connection management
contract. For a complete specification of these classes and interfaces, refer to the API documentation
distributed with this document.

The following figure shows the class hierarchy for the connection management contract. The diagram
also illustrates the responsibilities for the definition of an interface and its implementation:

Class Diagram: Connection Management Architecture

46 Jakarta Connectors

package: jakarta.resource.spi

<interface>
ConnectionManager

A\

<interface>
ManagedConnectionFactory

<interface>
ManagedConnection

<interface>
ManagedConnectionMetaData

>I

<interface>

ConnectionEventListener ~ FESRAS S Al

>I

<interface> .
LocalTransaction < -

package: (Application Server specific)
ConnectionManagerImpl

ConnectionEventListenerImpl

package: javax.transaction.xa

<interface>

XaRosonree P ATEETEERTT

......

7.5. Interface/Class Specification

package: jakarta.resource.cci

<interface> <interface>
ConnectionFactory Connection

package: Resource Adapter Specific

DefaultConnectionManager

ManagedConnectionFactoryImpl ConnectionImpl

ManagedConnectionImpl

0-1

ManagedConnection-
MetaDatalmpl

ConnectionFactoryImpl

LocalTransactionImpl

XAResourceImpl

----- Implements

e Inherits

7.5.1. ConnectionFactory and Connection [3]

A connection factory provides an interface to get a connection to an EIS instance. A connection
provides connectivity to an underlying EIS.

One goal of the Jakarta Connector Architecture is to support a consistent application programming
model across both CCI and EIS specific client APIs. To achieve this goal, the Jakarta Connector
Architecture recommends a design pattern (specified as an interface template) for both the connection
factory and connection interfaces.

The CCI connection factory and connection interfaces (defined in the package jakarta.resource.cci) are
based on the above design pattern. Refer to Connection Interfaces for details on the CCI connection
factory and connection interfaces. The following code sample shows the CCI interfaces:

Jakarta Connectors 47

7.5. Interface/Class Specification

public interface jakarta.resource.cci.ConnectionFactory extends java.io.Serializable,
jakarta.resource.Referenceable{

public jakarta.resource.cci.Connection getConnection()
throws jakarta.resource.ResourceException;

public interface jakarta.resource.cci.Connection {

public void close() throws jakarta.resource.ResourceException;

An example of a non-CCI interface is a resource adapter that uses the package com.myeis for its EIS
specific interfaces, as follows:

public interface com.myeis.ConnectionFactory extends java.io.Serializable,
jakarta.resource.Referenceable {

public com.myeis.Connection getConnection()
throws com.myeis.ResourceException;

public interface com.myeis.Connection {

public void close() throws com.myeis.ResourceException;

The JDBC interfaces— javax.sql.DataSource , java.sql.Connection —are examples of non-CCI connection
factory and connection interfaces.

Note that the methods defined on a non-CCI interface are not required to throw a ResourceException .
The exception can be specific to a resource adapter, for example: java.sqL.SQLException for JDBC (see
JDBC API Specification, version 4.1) interfaces.

The following are additional guidelines for the recommended interface template:

* A resource adapter is allowed to add additional getConnection methods to its definition of a
connection factory interface. These additional methods are specific to a resource adapter and its
EIS. For example, CCI defines a variant of the getConnection method that takes
jakarta.resource.cci.ConnectionSpec as a parameter.

48 Jakarta Connectors

7.5. Interface/Class Specification

* A resource adapter should only introduce additional getConnection methods if it requires
additional flexibility (beyond that offered by the default getConnection method) in the connection
request invocations.

* A connection interface must provide a close method to close the connection. The behavior of such
an application-level connection closure is described in the OID OID: Connection Event Notification.

The above design pattern leads to a consistent application programming model for connection creation
and connection closing.

7.5.1.1. Requirements

A resource adapter must provide implementations for both the connection factory and connection
interfaces.

In the Jakarta Connector Architecture, a resource adapter provides an implementation of the
connection factory interface in both managed and non-managed scenarios. This differs from the JDBC
(see JDBC API Specification, version 4.1) architecture.

In the JDBC architecture, an application server provides the implementation of javax.sql.DataSource
interface. Using a similar design approach for the connector architecture would have required an
application server to provide implementations of various connection factory interfaces defined by
different resource adapters. Since the connection factory interface may be defined as specific to an EIS,
the application server may find it difficult to provide implementations of connection factory interfaces
without any code generation.

The connection factory implementation class delegates the getConnection method invocation from an
application component to the associated ConnectionManager instance. The ConnectionManager
instance is associated with a connection factory instance at its instantiation [refer to the OID shown in
OID:Lookup of a ConnectionFactory Instance from JNDI].

Note that the connection factory implementation class must call the
ConnectionManager.allocateConnection method in the same thread context in which the application
component had called the getConnection method.

The connection factory implementation class is responsible for taking connection request information
and passing it in a form required by the ConnectionManager . allocateConnection method.

Jakarta Connectors 49

7.5. Interface/Class Specification

public interface jakarta.resource.spi.ConnectionManager
extends java.io.Serializable {

public Object allocateConnection(ManagedConnectionFactory mcf,
ConnectionRequestInfo cxRequestInfo)
throws ResourceException;

public interface jakarta.resource.spi.ConnectionRequestInfo {
public boolean equals(Object other);

public int hashCode();

7.5.1.2. ConnectionRequestInfo

The ConnectionRequestinfo parameter to the ConnectionManager.allocateConnection method enables a
resource adapter to pass its own request-specific data structure across the connection request flow.

A resource adapter extends the ConnectionRequestinfo interface to support its own data structure for
the connection request.

This is typically used to allow a resource adapter to handle application component-specified per-
connection request properties (for example, clientID and language). The application server passes
these properties to the createManagedConnection and matchManagedConnections method calls on the
ManagedConnectionFactory . These properties remain opaque to the application server during the
connection request flow.

It is important to note that the properties passed through the ConnectionRequestinfo instance should be
client-specific (for example, user name, password, language) and not related to the configuration of a
target EIS instance (for example, port number, server name).

The ManagedConnectionFactory instance is configured with properties required for the creation of a
connection to a specific EIS instance. Note that a configured ManagedConnectionFactory instance must
have the complete set of properties that are needed for the creation of the physical connections. This
enables the container to manage connection request without requiring an application component to
pass any explicit connection parameters. Configured properties on a ManagedConnectionFactory can
be overridden through ConnectionRequestinfo in cases when a component provides client-specific
properties in the getConnection method invocation. Refer to ResourceAdapter for details on the
configuration of a ManagedConnectionFactory .

When the ConnectionRequestinfo reaches the createManagedConnection or matchManagedConnections
methods on the ManagedConnectionFactory instance, the resource adapter uses this additional per-

50 Jakarta Connectors

7.5. Interface/Class Specification

request information to create and match connections.

A resource adapter must implement the equals and hashCode methods defined in the
ConnectionRequestInfo interface. The equality must be defined in the complete set of properties for the
ConnectionRequestInfo instance. An application server can use these methods to structure its
connection pool in an implementation-specific way. Since ConnectionRequestInfo represents a resource
adapter specific data structure, the conditions for equality are defined and implemented by a resource
adapter.

7.5.1.3. Additional Requirements

A resource adapter implementation is not required to support the mechanism for passing resource
adapter-specific connection request information. It can choose to pass null for ConnectionRequestInfo
in the allocateConnection invocation.

An implementation class for a connection factory interface must implement java.io.Serializable . This
enables a connection factory instance to be stored in the JNDI naming environment. A connection
factory implementation class must implement the interface jakarta.resource.Referenceable . Note that
the jakarta.resource.Referenceable interface extends the javax.naming.Referenceable interface. Refer to
section Scenario: Referenceable for details on the JNDI reference mechanism.

A connection implementation class implements its methods in a resource adapter implementation-
specific way. It must use a jakarta.resource.spi.ManagedConnection instance as its underlying physical
connection.

7.5.2. ConnectionManager

The jakarta.resource.spi.ConnectionManager interface provides a hook for a resource adapter to pass a
connection request to an application server. An application server provides different quality-of-service
as part of its handling of the connection request.

7.5.2.1. Interface
The connection management contract defines a standard interface for the ConnectionManager as

follows:

public interface jakarta.resource.spi.ConnectionManager
extends java.io.Serializable {

public Object allocateConnection(ManagedConnectionFactory mcf,

ConnectionRequestInfo cxRequestInfo)
throws ResourceException;

The method allocateConnection is called by a resource adapter’s connection factory instance so that the
instance can delegate a connection request to the ConnectionManager instance.

Jakarta Connectors 51

7.5. Interface/Class Specification

The ConnectionRequestinfo parameter represents information specific to a resource adapter to handle
the connection request.

7.5.2.2. Requirements

An application server must provide an implementation of the ConnectionManager interface. This
implementation is not specific to any particular resource adapter or connection factory interface.

The ConnectionManager implementation delegates to the internal mechanisms of an application server
to provide various services: security, connection pool management, transaction management, and
error logging and tracing.

An application server should implement these services in a generic manner, independent of any
resource adapter and EIS-specific mechanisms. The connector architecture does not specify how an
application server implements these services; the implementation is specific to each application
server.

After an application server hooks-in its services, the connection request is delegated to a
ManagedConnectionFactory instance either for the creation of a new physical connection or for the
matching of an already existing physical connection.

An implementation class for the ConnectionManager interface must implement the java.io.Serializable
interface.

A resource adapter must provide a default implementation of the
jakarta.resource.spi.ConnectionManager interface. The implementation class comes into play when a
resource adapter is used in a non-managed two-tier application scenario. In an application server-
managed environment, the resource adapter must not use the default ConnectionManager
implementation class. A default implementation of ConnectionManager enables the resource adapter
to provide services specific to itself. These services can include connection pooling, error logging and
tracing, and security management. The default ConnectionManager delegates to the
ManagedConnectionFactory the creation of physical connections to the underlying EIS.

An implementation of the ConnectionManager interface may only be provided by a resource adapter,
for the purpose described in this section, or by an application server that fully meets the requirements
of this specification.

ConnectionManager and Application Server Specific Services

52 Jakarta Connectors

7.5. Interface/Class Specification

...

1]
ConnectionManager e-— ConnectionFactory
. .
. .
. .
.

v

SecurityService

Manager :
Pool . - -
Manager - ManagedConnectionFactory

Transaction

Manager

7.5.3. ManagedConnectionFactory

A jakarta.resource.spi.ManagedConnectionFactory instance is a factory of both ManagedConnection and
connection factory instances. This interface supports connection pooling by defining methods for
matching and creating connections.

7.5.3.1. Interface

The following code extract shows the interface specification for the ManagedConnectionFactory .

Jakarta Connectors 53

7.5. Interface/Class Specification

public interface jakarta.resource.spi.ManagedConnectionFactory
extends java.io.Serializable {

public Object createConnectionFactory(ConnectionManager connectionManager)
throws ResourceException;

public Object createConnectionFactory()
throws ResourceException;

public ManagedConnection createManagedConnection(javax.security.auth.Subject
subject,
ConnectionRequestInfo cxRequestInfo)
throws ResourceException;

public ManagedConnection matchManagedConnections(java.util.Set connectionSet,
javax.security.auth.Subject
subject,
ConnectionRequestInfo
cxRequestInfo)
throws ResourceException;

public boolean equals(Object other);

public int hashCode();

The method createConnectionFactory creates a connection factory instance. For CCI, the connection
factory instance is of the type jakarta.resource.cci.ConnectionFactory . The connection factory instance
is initialized with the ConnectionManager instance provided by the application server.

When the createConnectionFactory method takes no arguments, ManagedConnectionFactory provides a
default ConnectionManager instance. This occurs in a non-managed application scenario.

The method createManagedConnection creates a new physical connection to the underlying EIS
instance. The ManagedConnectionFactory instance uses the security information (passed as a Subject
instance) and an optional ConnectionRequestInfo instance to create this new physical connection (refer
to Security Contract for more details).

A created ManagedConnection instance typically maintains internal information about the security
context (under which the connection has been created) and any connection-specific parameters (for
example, the socket connection).

The matchManagedConnections method enables the application server to use resource adapter-specific
criteria for matching a ManagedConnection instance to service a connection request. The application
server finds a candidate set of ManagedConnection instances from its connection pool based on
application server-specific criteria, and passes this candidate set to the matchManagedConnections

54 Jakarta Connectors

7.5. Interface/Class Specification

method. If the application server implements connection pooling, it must use the
matchManagedConnections method to choose a suitable connection.

The matchManagedConnections method matches a candidate set of connections using criteria known
internally to the resource adapter. The criteria used for matching connections is specific to a resource
adapter and is not specified by the connector architecture.

A ManagedConnection instance has specific internal state information based on its security context and
physical connection. The ManagedConnectionFactory implementation compares this information for
each ManagedConnection instance in the candidate set against the information passed in through the
matchManagedConnections method and the configuration of this ManagedConnectionFactory instance.
The ManagedConnectionFactory uses the results of this comparison to choose the ManagedConnection
instance that can best satisfy the current connection request.

If the resource adapter cannot find an acceptable ManagedConnection instance, it returns a null value .
In this case, the application server requests the resource adapter to create a new connection instance.

If the resource adapter does not support connection matching, it must throw a NotSupportedException
when matchManagedConnections method is invoked. This allows an application server to avoid pooling
connections obtained from that resource adapter.

7.5.3.2. Requirements

A resource adapter must provide an implementation of the ManagedConnectionFactory interface.

It is required that the ManagedConnectionFactory implementation class extend the implementation of
the hashCode and equals methods defined in java.lang.Object . These two methods are used by an
application server to structure its connection pool in an implementation-specific way. The equals and
hashCode method implementation should be based on a complete set of configuration properties that
make a ManagedConnectionFactory instance unique and specific to an EIS instance.

An implementation class for ManagedConnectionFactory interface must be a JavaBean. Refer to
JavaBean Requirements.

7.5.3.3. Connection Pool Implementation

The Jakarta Connector Architecture does not specify how an application server implements connection
pooling. However, it recommends that an application server should structure its connection pool such
that it uses the connection creation and matching facility in an efficient manner and does not cause
resource starvation.

The following paragraphs provide non-prescriptive guidelines for the connection pool implementation
by an application server.

An application server may partition its pool on a per ManagedConnectionFactory instance (and thereby
on a per EIS instance) basis. An application server may choose to guarantee, in an implementation
specific way, that it will always partition connection pools with at least per ManagedConnectionFactory

Jakarta Connectors 55

7.5. Interface/Class Specification

instance granularity.

The per- ManagedConnectionFactory instance pool may be further partitioned based on the transaction
or security context or any client-specific parameters (as associated with the ConnectionRequestInfo).
When an application server calls the matching facility, it is recommended that the application server
narrow down the candidate set of ManagedConnection instances to a reasonable limit, and achieves
matching efficiently. For example, an application server may pass only those ManagedConnection
instances to the matchManagedConnections method that are associated with the target
ManagedConnectionFactory instance (and thereby a specific target EIS instance).

An application server may use additional parameters for its search and matching criteria used in its
connection pool management. These parameters may be EIS- or application server- specific. The equals
and hashCode methods defined in both ManagedConnectionFactory and ConnectionRequestInfo
facilitate connection pool management and structuring by an application server.

7.5.3.4. Detecting Invalid Connections

import java.util.Set;
interface ValidatingManagedConnectionFactory {

Set getInvalidConnections(Set connectionSet) throws ResourceException;

This interface may be implemented by a ManagedConnectionFactory instance that supports the ability
to validate ManagedConnection objects. The getInvalidConnections method returns a set of invalid
ManagedConnection objects chosen from a specified set of ManagedConnection objects.

This optional functionality may be used by the application server to prune invalid ManagedConnection
objects from its connection pool periodically. The application server may use this functionality to test
for the validity of a ManagedConnection by passing in a Set of size one (with the ManagedConnection
that has to be tested for validity as the only member of the Set).

7.5.3.5. Requirement for XA Recovery

The ManagedConnectionFactory implementation for a transaction authority (XA) protocol capable
resource adapter (refer to Transaction Management for more details on transactions) must support the
createManagedConnection method that takes a Subject and a null for the parameter
ConnectionRequestInfo . This enables the application server to get an XAResource instance using
ManagedConnection.getXAResource and then call the XAResource.recover method. Note that the
application server uses this special case only to get to the XAResource instance for the underlying
resource manager.

The reason for this requirement is that the application server may not have a valid

56 Jakarta Connectors

7.5. Interface/Class Specification

ConnectionRequestInfo instance when it is required to get the ManagedConnection instance to initiate
recovery. Refer to ManagedConnectionFactory ~ for additional details on the
ManagedConnectionFactory.createManagedConnection method.

7.5.4. ManagedConnection

A jakarta.resource.spi.ManagedConnection instance represents a physical connection to an underlying
EIS.

The Jakarta Connector Architecture allows one or more ManagedConnection instances

9 to be multiplexed over a single physical pipe to an EIS. However, for simplicity, this
specification describes a ManagedConnection instance as being mapped 1-1 to a
physical connection.

The creation of a ManagedConnection instance typically results in the allocation of EIS and resource
adapter resources (for example, memory and network sockets) for each physical connection. Since
these resources can be costly and scarce, an application server pools ManagedConnection instances in a
managed environment.

Connection pooling improves the scalability of an application environment. An application server uses
the ManagedConnectionFactory and ManagedConnection interfaces to implement connection pool
management.

An application server also uses the transaction management-related methods (getXAResource and
getLocalTransaction) on the ManagedConnection interface to manage transactions. These methods are
discussed in more detail in Transaction Management.

The ManagedConnection interface also provides methods to support error logging and tracing in a
managed environment.

7.5.4.1. Interface

The connection management contract defines the following interface for a ManagedConnection . The
following code extract shows only the methods that are used for connection pool management. The
remaining methods are introduced in other parts of the specification.

Jakarta Connectors 57

7.5. Interface/Class Specification

public interface jakarta.resource.spi.ManagedConnection {

public Object getConnection(javax.security.auth.Subject subject,
ConnectionRequestInfo cxRequestInfo)
throws ResourceException;

public void destroy() throws ResourceException;

public void cleanup() throws ResourceException;

// Methods for Connection and transaction event notifications

public void addConnectionEventListener(ConnectionEventListener listener);
public void removeConnectionEventListener(ConnectionEventListener listener);
public ManagedConnectionMetaData getMetaData() throws ResourceException;

// Additional methods - specified in the other sections

The getConnection method creates a new application-level connection handle. A connection handle is
tied to an underlying physical connection represented by a ManagedConnection instance. For CCI, the
connection handle created by a ManagedConnection instance is of the type
jakarta.resource.cci.Connection . A connection handle is tied to its ManagedConnection instance in a
resource adapter implementation-specific way.

A ManagedConnection instance may use the getConnection method to change the state of the physical
connection based on the Subject and ConnectionRequestinfo arguments. For example, a resource
adapter can re-authenticate a physical connection to the underlying EIS when the application server
calls the getConnection method. ManagedConnection specifies re-authentication requirements in more
detail.

The method addConnectionEventListener allows a connection event listener to register with a
ManagedConnection instance. The ManagedConnection instance notifies connection close/error and
local transaction-related events to its registered set of listeners.

The removeConnectionEventListener method removes a registered ConnectionEventListener instance
from a ManagedConnection instance. Since an application server may modify the list of event listeners
at a time when the ManagedConnection may be iterating through its list of event listeners, the resource
adapter is recommended to handle this scenario by synchronizing access to its list of event listeners.

The method getMetaData returns the metadata information (represented by the

58 Jakarta Connectors

7.5. Interface/Class Specification
ManagedConnectionMetaData interface) for a ManagedConnection and the connected EIS instance.

7.5.4.2. Connection Sharing and Multiple Connection Handles

To support connection sharing, the application server can call getConnection multiple times on a
ManagedConnection instance. In this case, a call to the method ManagedConnection.getConnection does
not invalidate any previously created connection handles. Multiple connection handles can exist
concurrently for a single ManagedConnection instance. This design supports the connection sharing
mechanism. Refer to Connection Sharing for more details.

Because multiple connection handles to a single ManagedConnection can exist concurrently, a resource
adapter implementation may:

* Provide thread-safe semantics for a ManagedConnection implementation to support concurrent
access to a ManagedConnection instance from multiple connection handles. It is strongly
recommended that resource adapters provide support for concurrent access to a
ManagedConnection instance from multiple connection handles. This may be required in a future
release of the specification.

Ensure that there is at most one connection handle associated actively with a ManagedConnection
instance. The active connection handle is the only connection using the ManagedConnection
instance until an application-level close is called on this connection handle. The active connection
handle may also be modified by the container as a result of Connection Association (see Connection
Association) or the dissociation of a lazily associatable ManagedConnection (see Lazy Connection
Association Optimization). For example, a ManagedConnection.getConnection method
implementation associates a newly created connection handle as the active connection handle. Any
operations on the ManagedConnection from any previously created connection handles should
result in an application level exception. An example application level exception extends the
jakarta.resource.ResourceException interface and is specific to a resource adapter. A scenario
illustrating this implementation is shown in the Scenario: Local Transaction.

7.5.4.3. Connection Matching Contract

The application server invokes the ManagedConnectionFactory.matchManagedConnections method
(implemented by a resource adapter) to find a matching ManagedConnection for servicing a connection
request. The application server passes a candidate set of ManagedConnection instances to the
matchManagedConnections method.

The application server should use the connection matching contract for ManagedConnection instances
that have no existing connection handles. A candidate set passed to the matchManagedConnections
method should not have any ManagedConnection instances with existing connection handles.

There is no requirement that the matchManagedConnections implementation be capable of performing
a match across a candidate set that includes ManagedConnection instances with existing connection
handles. Note that a resource adapter can return a successful match with the requirement that the
ManagedConnection.getConnection method will later change the state of the matched
ManagedConnection . To avoid any unexpected matching behavior, the application server should not

Jakarta Connectors 59

7.5. Interface/Class Specification

pass a ManagedConnection instance with existing connection handles to the matchManagedConnections
method as part of a candidate set.

A connection request can lead to the creation of additional connection handles for a
ManagedConnection instance that already has one or more existing connection handles. In this case,
the application server should take the responsibility of checking whether or not the chosen
ManagedConnection instance can service such a request. Refer to Connection Sharing for details.

7.5.4.4. Cleanup of ManagedConnection

A resource adapter typically allocates system resources (outside a JVM instance) for a
ManagedConnection instance. Additionally, a ManagedConnection instance can have state specific to a
client, such as security context, data/function access structures, and result set from a query.

The method ManagedConnection.cleanup initiates a cleanup of any client-specific state maintained by a
ManagedConnection instance. The cleanup must invalidate all connection handles created using the
ManagedConnection instance. Any attempt by an application component to use the associated
connection handle after cleanup of the underlying ManagedConnection should result in an exception.

The container always drives the cleanup of a ManagedConnection instance. The container keeps track
of created connection handles in an implementation specific mechanism. It invokes
ManagedConnection.cleanup when it has to invalidate all connection handles associated with this
ManagedConnection instance and put the ManagedConnection instance back in to the pool. This may be
called after the end of a connection sharing scope or when the last associated connection handle is
closed for a ManagedConnection instance.

The invocation of the ManagedConnection.cleanup method on an already cleaned-up connection should
not throw an exception.

The cleanup of a ManagedConnection instance resets its client-specific state and prepares the
connection to be put back into a connection pool. The cleanup method should not cause the resource
adapter to close the physical pipe and reclaim system resources associated with the physical
connection.

An application server should explicitly call ManagedConnection.destroy to destroy a physical
connection. An application server should destroy a physical connection to manage the size of its
connection pool and to reclaim system resources.

A resource adapter should destroy all allocated system resources for this ManagedConnection instance
when the method destroy is called.

7.5.4.5. Requirements

A resource adapter must provide an implementation of the ManagedConnection interface.

60 Jakarta Connectors

7.5. Interface/Class Specification

7.5.5. ManagedConnectionMetaData

The method ManagedConnection.getMetaData returns a
jakarta.resource.spi.ManagedConnectionMetaData instance. @ The ManagedConnectionMetaData
provides information about a ManagedConnection and the connected EIS instance. This information is
only available to the caller of this method if a valid physical connection exists for an EIS instance.

7.5.5.1. Interface

The ManagedConnectionMetaData interface provides the following information about an EIS instance:

e Product name of the EIS instance
e Product version of the EIS instance

* Maximum number of concurrent connections from different processes that an EIS instance can
support

e User name for this connection, as known to the EIS instance
The method getUserName returns the user name known to the underlying EIS instance for an active

connection. The name corresponds to the resource principal under whose security context the
connection to the EIS instance has been established.

7.5.5.2. Requirements

A resource adapter must provide an implementation of the ManagedConnectionMetaData interface. An
instance of this implementation class should be returned from the ManagedConnection.getMetaData
method.

7.5.6. ConnectionEventListener

The Jakarta Connector Architecture provides an event callback mechanism that enables an application
server to receive notifications from a ManagedConnection instance. An application server uses these
event notifications to manage its connection pool, to clean up invalid or terminated connections, and
to manage local transactions. Transaction Management discusses local transaction-related event
notifications in more detail.

An application server implements the jakarta.resource.spi.ConnectionEventListener interface. It uses
the ManagedConnection.addConnectionEventListener method to register a connection listener with a
ManagedConnection instance.

7.5.6.1. Interface

The following code extract specifies the ConnectionEventListener interface:

Jakarta Connectors 61

7.5. Interface/Class Specification

public interface jakarta.resource.spi.ConnectionEventListener {
public void connectionClosed(ConnectionEvent event);

public void connectionErrorOccurred(ConnectionEvent event);

// Local Transaction Management related events

public void localTransactionStarted(ConnectionEvent event);
public void localTransactionCommitted(ConnectionEvent event);

public void localTransactionRolledback(ConnectionEvent event);

A ManagedConnection instance calls the ConnectionEventListener.connectionClosed method to notify its
registered set of listeners when an application component closes a connection handle. The application
server uses this connection close event to make a decision on whether or not to put the
ManagedConnection instance back into the connection pool.

The ManagedConnection instance calls the ConnectionEventListener.connectionErrorOccurred method
to notify its registered listeners of the occurrence of a physical connection-related error. The event
notification happens just before a resource adapter throws an exception to the application component
using the connection handle.

The connectionErrorOccurred method indicates that the associated ManagedConnection instance is now
invalid and unusable. The application server handles the connection error event notification by
initiating application server-specific cleanup (for example, removing ManagedConnection instance
from the connection pool) and then calling ManagedConnection.destroy method to destroy the physical
connection.

A ManagedConnection instance also notifies its registered listeners for transaction-related events by
calling the following methods—localTransactionStarted, localTransactionCommitted, and
localTransactionRolledback. An application server uses these notifications to manage local
transactions. See Local Transaction Management Contract for details on the local transaction
management.

The processing of event notifications by the registered event listeners may be synchronous or
asynchronous. That is, a listener may process an event notification immediately (as part of the
notification method call) or it may defer event processing to a later in time. The resource adapter must
not assume the processing of event notifications by its listeners to be synchronous or asynchronous.

62 Jakarta Connectors

7.6. Error Logging and Tracing

7.5.7. ConnectionEvent

A jakarta.resource.spi.ConnectionEvent class provides information about the source of a connection-
related event. A ConnectionEvent instance contains the following information:
» Type of the connection event

* ManagedConnection instance that has generated the connection event. A ManagedConnection
instance is returned from the ConnectionEvent.getSource method.

* Connection handle associated with the ManagedConnection instance; required for the
CONNECTION_CLOSED event and optional for the other event types.

* Optionally, an exception indicating a connection related error. Refer to System Exceptions for
details on the system exception. Note that the exception 1is wused for the
CONNECTION_ERROR_OCCURRED notification.

This class defines the following types of event notifications: * CONNECTION_CLOSED *
LOCAL_TRANSACTION_STARTED * LOCAL_TRANSACTION_COMMITTED *
LOCAL_TRANSACTION_ROLLEDBACK * CONNECTION_ERROR_OCCURRED

7.6. Error Logging and Tracing

The Jakarta Connector Architecture provides basic support for error logging and tracing in both
managed and non-managed environments. This support enables an application server to detect errors
related to a resource adapter and its EIS, and to use error information for debugging.

7.6.1. ManagedConnectionFactory

The jakarta.resource.spi.ManagedConnectionFactory interface defines the following methods for error
logging and tracing:

public interface jakarta.resource.spi.ManagedConnectionFactory
extends java.io.Serializable {

public void setlLogWriter(java.io.PrintWriter out)
throws ResourceException;

public java.io.PrintWriter getlLogWriter()
throws ResourceException;

The log writer is a character output stream to which all logging and tracing messages for a
ManagedConnectionFactory instance are printed.

Jakarta Connectors 63

7.7. Object Diagram

A character output stream can be registered with a ManagedConnectionFactory instance using the
setLogWriter method. A ManagedConnectionFactory implementation uses this character output stream
to output error log and trace information.

An application server manages the association of a log writer with a ManagedConnectionFactory .
When a ManagedConnectionFactory instance is created, the log writer is initially null and logging is
disabled. Associating a log writer with a ManagedConnectionFactory instance enables logging and
tracing for the ManagedConnectionFactory instance.

An application server administrator primarily uses the error and trace information printed on a log
writer by a ManagedConnectionFactory instance. This information is typically system-level in nature
(for example, information related to connection pooling and transactions) rather than of direct interest
to application developers.

7.6.2. ManagedConnection

The jakarta.resource.spi. ManagedConnection interface defines the following methods to support error
logging and tracing specific to a physical connection.

public interface jakarta.resource.spi.ManagedConnection {

public void setlLogWriter(java.io.PrintWriter out)
throws ResourceException;

public java.io.PrintWriter getlLogWriter()
throws ResourceException;

A newly created ManagedConnection instance gets the default log writer from the
ManagedConnectionFactory instance that creates the ManagedConnection instance. The default log
writer can be overridden by an application server using the ManagedConnection.setLogWriter method.
The setting of the log writer on a ManagedConnection enables an application server to manage error
logging and tracing specific to the physical connection represented by a ManagedConnection instance.

An application server can optionally disassociate the log writer from a ManagedConnection instance
when this connection instance is put back into the connection pool by using setLogWriter and passing
null .

7.7. Object Diagram

The following shows the object diagram for the connection management architecture. It shows
invocations across the various object instances that correspond to the architected interfaces in the
connection management contract, as opposed to those instances specific to implementations of the
application server and the resource adapter.

64 Jakarta Connectors

7.8. Illustrative Scenarios

To keep the diagram simple, it does not show the transaction management contract-related interfaces (
XAResource and LocalTransaction) and invocations.

Object Diagram: Connection Management Architecture

Application Component

. . . - ° .
Application Server . c. Resource Adapter
ccc 'c.-c-0-0-c-c'-'c-c-c-c-c-c-o-o-ococo-
. .
ConnectionManager Lo ConnectionFactory- *
allocation connection
y
S
. .
A)
. A
L . . create .
application server specific .o new instance “

.

\V4 : .
s . N .
SecurityService c . Managecf@gnnecuonlfactory . .
. (Y N
. .
Manager T . e ResourceAdapter .
* create new instance specific ’

. . S
........................ ,'
* . . ’
> . ’ creat
. . . # create
-~ ’
createManagedConnection .~ . S new

matchManagedConnections e . ? instance
createConnectionFactory - .)

-add/removeConnectionEventListener

Pool Manager . getConnection .
. o . Managed
+ Connection

Transaction
Manager

N :
application server specific EIS specific

Connection Event

.
. .
.
.
. .
‘(.o notifications
. .
. .

.......................................

ConnectionEventListener

Architected Interface

Enterprise Information System (EIS)

""" Instantiation

""" Implementation Specific

7.8. Illustrative Scenarios

This section uses sequence diagrams to illustrate various interactions between the object instances
involved in the connection management contract.

Some sequence diagrams include a box labeled “Application Server”. This box refers to various
modules and classes internal to an application server. These modules and classes communicate
through contracts that are application server implementation specific.

Jakarta Connectors 65

7.8. Ilustrative Scenarios

In this section, the CCI interfaces— jakarta.resource.cci.ConnectionFactory and
jakarta.resource.cci.Connection —represent connection factory and connection interfaces respectively.

The description of these sequence diagrams does not include transaction-related details. These are
covered in Transaction Management.

7.8.1. Scenario: Connection Pool Management

The following object interactions are involved in the scenario shown in OID: Connection Event
Notification:

* The application component calls the getConnection method on the
jakarta.resource.cci.ConnectionFactory instance (returned from the JNDI lookup) to get a
connection to the underlying EIS instance. Refer to JNDI Configuration and Lookup for details on
the JNDI configuration and lookup.

» The ConnectionFactory instance initially handles the connection request from the application
component in a resource adapter specific way. It then delegates the connection request to the
associated ConnectionManager instance. The ConnectionManager instance has been associated with
the ConnectionFactory instance when the ConnectionFactory was instantiated. The
ConnectionFactory instance receives all connection request information passed through the
getConnection method and, in turn, passes it in a form required by the method ConnectionManager
. allocateConnection . The ConnectionRequestInfo parameter to the allocateConnection method
enables a ConnectionFactory implementation class to pass on client-specific connection request
information. This information is opaque to an application server and is used subsequently by a
resource adapter to do connection matching and creation.

* The ConnectionManager instance (provided by the application server) handles the
allocateConnection request by interacting with the application server specific connection pool
manager. The interaction between a ConnectionManager instance and pool manager is internal and
specific to an application server.

* The application server finds a candidate set of ManagedConnection instances from its connection
pool. The candidate set includes all ManagedConnection instances that the application server
considers suitable for handling the current connection allocation request. The application server
finds the candidate set using its own implementation-specific structuring and lookup criteria for
the connection pool. Refer to ManagedConnectionFactory for guidelines of connection pool
implementation by an application.

If the application server finds no matching ManagedConnection instance that can best handle this
connection allocation request, or if the candidate set is empty, the application server calls the
ManagedConnectionFactory.createManagedConnection method to create a new physical connection
to the underlying EIS instance. The application server passes necessary security information (as
JAAS Subject) as part of this method invocation. For details on the security contract, refer to the
Security Management chapter. It can also pass the ConnectionRequestinfo information to the
resource adapter. The connection request information has been associated with the connection
allocation request by the resource adapter and is used during connection creation.

66 Jakarta Connectors

7.8. Illustrative Scenarios

* The ManagedConnectionFactory instance creates a new physical connection to the underlying EIS to
handle the createManagedConnection method. This new physical connection is represented by a
ManagedConnection instance. The ManagedConnectionFactory uses the security information
(passed as a Subject instance), ConnectionRequestinfo , and its default set of configured properties
(port number, server name) to create a new ManagedConnection instance. Refer to Security
Contract for more details on the createManagedConnection method.

* The ManagedConnectionFactory instance initializes the created ManagedConnection instance and
returns it to the application server.

* The application server registers a ConnectionEventListener instance with the ManagedConnection
instance, enabling it to receive notifications for events on this connection. The application server
uses these event notifications to manage connection pooling and transactions.

» The ManagedConnection instance obtains its log writer (for error logging and tracing support) from
the ManagedConnectionFactory instance that created this connection. However, an application
server can set a new log writer with a ManagedConnection instance to do additional error logging
and tracing at the level of a ManagedConnection .

» The application server does the necessary transactional setup for the ManagedConnection instance.
Transaction Management explains this step in more detail.

* Next, the application server calls ManagedConnection.getConnection method to get an application
level connection handle of type jakarta.resource.cci.Connection . A ManagedConnection instance
uses the Subject and ConnectionRequestInfo parameters to the getConnection method to change the
state of the ManagedConnection . Calling the getConnection method does not necessarily create a
new physical connection to the EIS instance. Calling getConnection produces a temporary
connection handle that is used by an application component to access the underlying physical
connection. The actual underlying physical connection is represented by a ManagedConnection
instance.

* The application server returns the connection handle to the resource adapter. The resource
adapter then passes the connection handle to the application component that initiated the
connection request.

OID: Connection Pool Management with New Connection Creation

Jakarta Connectors 67

7.8. Ilustrative Scenarios

Resource Adapter

Resource Adapter
ManagedConnectionFactory

Application Transaction XAResources

Application jakarta.resource.cci.

Component i r 5 .
p ConnectionFactory Manager ManagedConnection

Server

getConnection

N4

ConnectionManager.allocateConnection

AN
7

Application server hooks up a candidate
connection set from the connection pool

createManagedConnection
S
7

create a new instance

addConnectionEventListener(ConnectionEventListener)

A4

Optional: setLogWriter(PrintWriter)

A 4

Application server performs transactional setup for the
ManagedConnection instance. For example, application

server performs following setup for JTA transactions

getXAResource

Transaction.enlistResource(XAResource)

XAResource.start(XID) > .
...

getConnection(Subject, ConnectionRequestInfo)

return jakarta.resource.cci.Connection

N

return jakarta.resource.cci.Connection

\

7.8.2. Scenario: Connection Matching

OID: Connection Pool Management with Connection Matching shows the object interactions for a
connection matching scenario—that is, a scenario in which the application server finds a non-empty
candidate connection set and calls the resource adapter to do matching on the candidate set. The

following steps are involved in this scenario:

1. The application server handles the connection allocation request by creating a candidate set of
ManagedConnection instances from the connection pool. The candidate set includes the
ManagedConnection instances that the application server considers suitable for handling the

68 Jakarta Connectors

7.8. Illustrative Scenarios

current connection allocation request. The application server finds this candidate set using its own
implementation-specific structuring and lookup criteria for the connection pool. Refer to
ManagedConnectionFactory for guidelines on connection pool implementation by an application.

2. The application server calls the ManagedConnectionFactory.matchManaged-Connections method to
enable the resource adapter to do the connection matching. It passes the candidate connection set,
security information (as a Subject instance associated with the current connection request), and
any ConnectionRequestInfo .

3. The ManagedConnectionFactory instance matches the candidate set of connections using the
criteria known internally to the resource adapter. The matchManagedConnections method returns
a ManagedConnection instance that the resource adapter considers to be an acceptable match for
the current connection allocation request.

4. The application server can set a new log writer with the ManagedConnection instance to do error
logging and tracing at the level of the ManagedConnection.

5. The application server does the necessary transactional setup for the ManagedConnection instance.
Transaction Management explains this step in more detail.

6. The application server calls the ManagedConnection.getConnection method to get a new application
level connection handle.

7. The ManagedConnection.getConnection method implementation uses the Subject parameter and any
ConnectionRequestInfo to set the state of the ManagedConnection instance based on the current
connection allocation request. Refer to ManagedConnection for details if a resource adapter
implements support for re-authentication of a ManagedConnection instance.

8. The application server returns the connection handle to the resource adapter. The resource
adapter then passes the connection handle to the application component that initiated the
connection request.

OID: Connection Pool Management with Connection Matching

Jakarta Connectors 69

7.8. Ilustrative Scenarios

Resource Adapter

Resource Adapter

ManagedConnectionFactory

Application Transaction XAResources

Application jakarta.resource.cci.

Component ConnectionFactory Server Manager ManagedConnection

getConnection

WV

ConnectionManager.allocateConnection

N
rd

Application server hooks up a candidate

connection set from the connection pool

matchManagedConnection

addConnectionEventListener(ConnectionEventListener)

A 4

A\ 4

Optional: setLogWriter(PrintWriter)

v

Application server performs transactional setup for the
ManagedConnection instance. For example, application

server performs following setup for JTA transactions

Transaction.enlistResource(XAResource)

................. > >

Lo XAResource.start(XID) > .

getConnection(Subject, ConnectionRequestInfo)

return jakarta.resource.cci.Connection

N\

return jakarta.resource.cci.Connection

\

7.8.3. Scenario: Connection Event Notifications and Connection Close

For each ManagedConnection instance in the pool, the application server registers a
ConnectionEventListener instance to receive close and error events on the connection. This scenario
explains how the connection event callback mechanism enables an application server to manage

connection pooling.

The scenario involves the following steps (see OID: Connection Event Notification) when an application
component initiates a connection close:

1. The application component releases an allocated connection handle using the close method on the

70 Jakarta Connectors

7.8. Illustrative Scenarios

jakarta.resource.cci.Connection instance. The Connection instance delegates the close method to the
associated ManagedConnection instance. The delegation happens through an association between
ManagedConnection instance and the corresponding connection handle Connection instance. The
mechanism by which this association is achieved is specific to the implementation of a resource
adapter.

2. The connection management contract places a requirement that a ManagedConnection instance
must not alter the state of a physical connection while handling the connection close.

3. The ManagedConnection instance notifies all its registered listeners of the application’s connection
close request using the ConnectionEventListener . connectionClosed method. It passes a
ConnectionEvent instance with the event type set to CONNECTION_CLOSED .

4. On receiving the connection close event notification, the application server performs the
transaction management-related cleanup of the ManagedConnection instance. Refer to OID:
Connection Event Notification for details on the cleanup of a ManagedConnection instance
participating in a Jakarta Transactions transaction.

5. The application server also uses the connection close event notification to manage its connection
pool. On receiving the connection close notification, the application server -calls the
ManagedConnection.cleanup method (depending on whether the ManagedConnection is shared and
the presence of other active connection handles) to perform cleanup on the ManagedConnection
instance that raised the connection close event. The application server-initiated cleanup of a
ManagedConnection instance prepares this ManagedConnection instance to be reused for
subsequent connection requests. See Connection Sharing for a discussion of connection sharing
and its implications on ManagedConnection cleanup.

6. After initiating the necessary cleanup for the ManagedConnection instance, the application server
puts the ManagedConnection instance back into the connection pool. The application server should
be able to use this available ManagedConnection instance to handle future connection allocation
requests from application components.

7.8.3.1. Connection Cleanup

The application server can also initiate cleanup of a ManagedConnection instance when the container
terminates the application component instance that has the corresponding connection handle. The
application server should call ManagedConnection.cleanup to initiate the connection cleanup. After the
cleanup, the application server puts the ManagedConnection instance into the pool to serve future
allocation requests.

7.8.3.2. Connection Destroy

To manage the size of the connection pool, the application server can call ManagedConnection.destroy
method to destroy a ManagedConnection. A ManagedConnection instance handles this method call by
closing the physical connection to the EIS instance and releasing all system resources held by this
instance.

The application server also calls ManagedConnection.destroy when it receives a connection error event

Jakarta Connectors 71

7.9. Architecture: Non-Managed Environment

notification that signals a fatal error on the physical connection.

OID: Connection Event Notification

Resource Adapter Resource Adapter
- . ManagedConnectionFactor
Application jakarta.resource.cci. Application Transaction XAResgources ’
Component ConnectionFactory Server Manager ManagedConnection

dose() Internal: Resource Adapter implementation specific

N4
A\ 4

Application server hooks up
a candidate connection set

from the connection pool

connectionClosed(ConnectionEvent: CONNECTION_CLOSED)
ya

..

. ' ! Transaction.enlistResource(XAResource)

: >

XAResource.start(XID)

...

ManagedConnection.cleanup

Application Server returns ManagedConnection instance

to the connection pool

7.9. Architecture: Non-Managed Environment

The connection management contract enables a resource adapter to be used in a two-tier application
directly from an application client.

In a non-managed application scenario, the ConnectionManager implementation class may be provided

72 Jakarta Connectors

7.9. Architecture: Non-Managed Environment

either by a resource adapter (as a default ConnectionManager implementation) or by application
developers. Note that a default implementation of the ConnectionManager should be defined for a
resource adapter (in terms of the functionality provided and third-party components added) only at
development time.

The default ConnectionManager instance interposes on the connection request and delegates the
request to the ManagedConnectionFactory instance. The ManagedConnectionFactory creates a physical
connection (represented by a ManagedConnection instance) to the wunderlying EIS. The
ConnectionManager gets a connection handle (of type jakarta.resource.cci.Connection for CCI) from the
ManagedConnection and returns it to the connection factory. The connection factory returns the
connection handle to the application.

A resource adapter supports interactions (shown as light shaded lines in the following figure) between
its internal objects in an implementation-specific way. For example, a resource adapter can use the
connection event listening mechanism as part of its ManagedConnection implementation for
connection management. However, the resource adapter is not required to use the connection event
mechanism to drive its internal interactions.

Architecture Diagram: Non-Managed Application Scenario

----- Architected contract
Application Component
e Implementation specific

v A4

Resource Adapter

ConnectionFactory Connection

ConnectionManager

ManagedConnectionFactory

ManagedConnection

v/

Enterprise Information System (EIS)

7.9.1. Scenario: Programmatic Access to ConnectionFactory

To maintain the consistency of the application programming model across both managed and non-

Jakarta Connectors 73

7.9. Architecture: Non-Managed Environment

managed environments, application code should use the JNDI namespace to look-up a connection
factory instance.

The following code extract shows how an application client accesses a connection factory instance in a
non-managed environment. The code extract does not show the use of JNDI. It is used as an example to
illustrate the use of ManagedConnectionFactory and ConnectionFactory interfaces in the application
code. Refer to section JNDI Configuration and Lookup for details on JNDI configuration and lookup.

// Application Client Code

// Create an instance of the ManagedConnectionFactory

// implementation class passing in initialization parameters
// (if any) for this instance

com.myeis.ManagedConnectionFactoryImpl mcf =
new com.myeis.ManagedConnectionFactoryImpl(...);

// Set properties on the ManagedConnectionFactory instance

// Note: Properties are defined on the implementation class

// and not on the jakarta.resource.spi.ManagedConnectionFactory
// interface

mcf.setServerName(...);

mcf.setPortNumber(...);

// set remaining properties
// Get access to connection factory. The ConnectionFactory instance
// gets initialized with the default ConnectionManager provided

// by the resource adapter

jakarta.resource.cci.ConnectionFactory cxf =
(jakarta.resource.cci.ConnectionFactory) mcf.createConnectionFactory();

// Get a connection using the ConnectionFactory instance
jakarta.resource.cci.Connection cx = cxf.getConnection(...);

// use connection to access the underlying EIS instance

// Close the connection
cx.close();

74 Jakarta Connectors

7.9. Architecture: Non-Managed Environment

7.9.2. Scenario: Connection Creation in Non-Managed Application Scenario

The following object interactions are involved in the scenario shown in OID: Connection Creation in a
Non-Managed Application Scenario:

* The application client calls a method on the jakarta.resource.cci.ConnectionFactory instance,
returned from the JNDI lookup, to get a connection to the underlying EIS instance.

* The ConnectionFactory instance delegates the connection request from the application to the
default ConnectionManager instance. The resource adapter provides the default
ConnectionManager implementation.

* The ConnectionManager instance creates a new physical connection to the underlying EIS instance
by calling the ManagedConnectionFactory.createManagedConnection method.

* The ManagedConnectionFactory instance handles the createManagedConnection method by creating
a new physical connection to the underlying EIS, represented by a ManagedConnection instance.
The ManagedConnectionFactory uses the security information, passed as a Subject instance, any
ConnectionRequestInfo instance , and its configured set of properties, such as port number, server
name, to create a new ManagedConnection instance.

* The ManagedConnectionFactory initializes the state of the created Managed-Connection instance
and returns it to the default ConnectionManager instance.

* The ConnectionManager instance calls the ManagedConnection.getConnection method to get an
application-level connection handle. Calling the getConnection method does not necessarily create a
new physical connection to the EIS instance. Calling getConnection produces a temporary handle
that is used by an application to access the underlying physical connection. The actual underlying
physical connection is represented by a ManagedConnection instance.

* The ConnectionManager instance returns the connection handle to the ConnectionFactory instance,
which then returns the connection to the application that initiated the connection request.

OID: Connection Creation in a Non-Managed Application Scenario

Jakarta Connectors 75

7.10. Requirements

Resource Adapter

Application jakarta.resource.cci. Connection ManagedConnection Managed
Client ConnectionFactory Manager Factory Connection

getConnection

allocateConnection

A\ 4

createManagedConnection

A\ 4

create a new instance

getConnection(Subject, ConnectionRequestInfo)

A\ 4

|, return jakarta.resource.cci.Connection
A

return jakarta.resource.cci.Connection

\

7.10. Requirements

This section outlines requirements for the connection management contract.

7.10.1. Resource Adapter

The requirements for a resource adapter are as follows:

* Aresource adapter must provide implementations of the following interfaces:
o jakarta.resource.spi.ManagedConnectionFactory
o jakarta.resource.spi.ManagedConnection
o jakarta.resource.spi.ManagedConnectionMetaData

* The ManagedConnection implementation provided by a resource adapter must use the following
interface and classes to provide support to an application server for connection management and
transaction management, as explained later:

76 Jakarta Connectors

7.10. Requirements

o jakarta.resource.spi.ConnectionEvent

o jakarta.resource.spi.ConnectionEventListener To support non-managed environments, a
resource adapter is not required to use the above two interfaces to drive its internal object
interactions.

* A resource adapter must provide support for basic error logging and tracing by implementing the
following methods:

o ManagedConnectionFactory.set/getLogWriter
o ManagedConnection.set/getLogWriter

° A resource adapter must provide a default implementation of the
jakarta.resource.spi.ConnectionManager interface. The implementation class comes into play when
a resource adapter is used in a non-managed two-tier application scenario. In an application
server-managed environment, the resource adapter must not use the default ConnectionManager
implementation class. A default implementation of ConnectionManager enables the resource
adapter to provide services specific to itself. These services can include connection pooling, error
logging and tracing, and security management. The default ConnectionManager delegates to the
ManagedConnectionFactory the creation of physical connections to the underlying EIS.

* In a managed environment, with the exception of application client containers, a resource adapter
must not asynchronously (that is, using a separate thread other than the application thread) call
application objects other than message-driven beans. However, this restriction does not apply to a
non-managed scenario, as well as application client containers. A resource adapter deployer may
use the ResourceAdapter JavaBean to configure the resource adapter during its deployment to set
the desired behavior, based on the requirements of the deployment environment.

* A resource adapter is not allowed to support its own internal connection pooling in a managed
environment. In this case, the application server is responsible for connection pooling. However, a
resource adapter may multiplex connections (one or more ManagedConnection instances per
physical connection) over a single physical pipe transparent to the application server and
components.

In a non-managed two tier application scenario, a resource adapter is allowed to support connection
pooling internal to the resource adapter.

7.10.2. Application Server

The requirements for an application server are as follows:
* An application server must use the interfaces defined in the connection management contract to
use services provided by a resource adapter. These interfaces are as follows:
o jakarta.resource.spi. ManagedConnectionFactory
o jakarta.resource.spi.ManagedConnection
o jakarta.resource.spi.ManagedConnectionMetaData

* An application server must provide an implementation of the

Jakarta Connectors 77

7.10. Requirements

jakarta.resource.spi.ConnectionManager interface. This implementation should not be specific to
any particular type of resource adapter, EIS, or connection factory interface.

* An application server must implement the jakarta.resource.spi.-ConnectionEventListener interface
and to register ConnectionEventListener with a resource adapter to get connection-related event
notifications. An application server uses these event notifications to do its pool management,
transaction management, and connection cleanup.

* An application server must use the following interfaces (supported by the resource adapter) to
provide basic error logging and tracing for its configured set of resource adapters:

o ManagedConnectionFactory.set/getLogWriter
o ManagedConnection.set/getLogWriter

* An application server must use the jakarta.resource.spi.ConnectionManager hook-in mechanism to
provide its specific quality-of-services. The Jakarta Connector Architecture does not specify the set
of services the application server provides, nor does it specify how the application server
implements these services.

78 Jakarta Connectors

8.1. Overview

Chapter 8. Transaction Management

This chapter specifies the transaction management contract between an application server (and
supported transaction manager) and an EIS resource manager.

This chapter focuses only on the system-level aspects of transaction management. The Jakarta EE
component model specifications describe the application level transaction model. For example, the
Jakarta Enterprise Beans specification (see Jakarta Enterprise Beans Specification, version 4.0)
specifies the transaction model for Jakarta Enterprise Bean components.

8.1. Overview

The following figure shows an application component deployed in a container provided by an
application server. The application component performs transactional access to multiple resource
managers. The application server uses a transaction manager that takes the responsibility of managing
transactions across multiple resource managers.

Transaction Management Contract

Container-Component
Contract
Application Component

Transaction
Management
System Contract Resource Adapter

Application Server

Transaction Manager

EIS Specific Interface

Enterprise Information System (EIS)

A resource manager can support two types of transactions:

* A transaction that is controlled and coordinated by a transaction manager external to the resource
manager. This document refers to such a transaction as Jakarta Transaction or XA transaction.

* A transaction that is managed internal to a resource manager. The coordination of such
transactions involves no external transaction managers. This document refers to such transactions
as RM local transactions (or local transactions).

A transaction manager coordinates transactions across multiple resource managers. It also provides
additional low-level services that enable transactional context to be propagated across systems. The
services provided by a transaction manager are not visible directly to the application components.

Jakarta Connectors 79

8.2. Transaction Management Scenarios

The Jakarta Connector Architecture defines a transaction management contract between an
application server and a resource adapter and its underlying resource manager. The transaction
management contract has two parts, depending on the type of transaction:

* a Jakarta Transactions javax.transaction.xa.XAResource based contract between a transaction
manager and a resource manager
* alocal transaction management contract
These contracts enable an application server to provide the infrastructure and runtime environment
for transaction management. Application components rely on this transaction infrastructure to
support their component-level transaction model. Connection Handles obtained in the context of an
application component should not be passed between application component boundaries, especially if

the connection handles are involved in a transaction, and an application server is not required to
support this usage.

8.2. Transaction Management Scenarios

This section uses a set of scenarios to present an overview of the transaction management
architecture.

8.2.1. Transactions Across Multiple Resource Managers

In the following figure, an application client invokes Jakarta Enterprise Beans component X. Enterprise
Bean X accesses transaction programs managed by a TP system and calls Enterprise Bean Y to access
an ERP system.

Scenario: Transactions Across Multiple Resource Managers

Application Server

client

[€ — €D

Transaction Manager

XAResource based
contract

TP System ERP System

The application server uses a transaction manager to support a transaction management
infrastructure that enables an application component to perform transactional access across multiple
EIS resource managers. The transaction manager manages transactions across multiple resource
managers and supports propagation of the transaction context across distributed systems.

80 Jakarta Connectors

8.2. Transaction Management Scenarios

The transaction manager supports a Jakarta Transaction XAResource -based transaction management
contract with a resource adapter and its underlying resource manager. The ERP system supports
Jakarta Transaction by implementing an XAResource interface through its resource adapter. The TP
system also implements an XAResource interface. This interface enables the two resource managers to
participate in transactions that are coordinated by an external transaction manager. The transaction
manager uses the XAResource interface to manage transactions across the two underlying resource
managers.

The Enterprise Beans X and Y access the ERP and TP system using the respective client access API for
the two systems. Behind the scenes, the application server enlists the connections to both systems,
obtained from their respective resource adapters, as part of the transaction. When the transaction
commits, the transaction manager performs a two-phase commit protocol across the two resource
managers, ensuring that all read/write access to resources managed by both the TP system and ERP
system is either entirely committed or entirely rolled back.

8.2.2. Local Transaction Management

The transactions are demarcated either by the container (called container-managed demarcation) or
by a component (called component-managed demarcation). In component-managed demarcation, an
application component can use the Jakarta Transaction UserTransaction interface or a transaction
demarcation API specific to an EIS (for example, JDBC transaction demarcation using
java.sql.Connection).

The Jakarta Enterprise Beans specification requires a Jakarta Enterprise Beans container to support
both container-managed and component-managed transaction demarcation models. The Jakarta
Server Pages and servlet specifications require a web container to support component-managed
transaction demarcation.

If multiple resource managers participate in a transaction, the Jakarta Enterprise Beans container uses
a transaction manager to coordinate the transaction. The contract between the transaction manager
and resource manager is defined using the XAResource interface.

If a single resource manager instance participates in a transaction (either component-managed or
container-managed), the container has two choices:

* Using the transaction manager to manage this transaction. The transaction manager uses one-
phase commit-optimization, described in Scenarios Supported, to coordinate the transaction for
this single resource manager instance.

* Letting the resource manager coordinate this transaction internally without involving an external
transaction manager.

If an application accesses a single resource manager using an XA transaction, it has more performance
overhead compared to using a local transaction. The overhead is due to the involvement of an external
transaction manager in the coordination of the XA transaction.

To avoid the overhead of using an XA transaction in a single resource manager scenario, the

Jakarta Connectors 81

8.3. Transaction Management Contract

application server may optimize this scenario by using a local transaction instead of an XA transaction.
This scenario is shown in the following figure.

Scenario: Local Transaction on a Single Resource Manager

Application Server

client
AN
7
Local

Application . Transaction
Contract . contract

TP System

8.3. Transaction Management Contract

This section specifies the transaction management contract. The transaction management contract
builds on the connection management contract specified in Connection Management.

The following figure shows the interfaces and flows in the transaction management contract. It does
not show the interfaces, classes, and flows that are the same in the connection management contract.

Architecture Diagram: Transaction Management

82 Jakarta Connectors

8.3. Transaction Management Contract

----- Architected Contract

==]mplementation Specific

Resource Adapter

ConnectionManager

Resource Adapter

v

ConnectionFactory Connection

v
ManagedConnection
LocalTransaction

Transaction

Manager XAResource

ConnectionEventListener

Enterprise Information System (EIS)

8.3.1. Interface: ManagedConnection

The jakarta.resource.spi.Managed Connection instance represents a physical connection to an EIS and
acts as a factory for connection handles.

The following code extract shows the methods on the ManagedConnection interface that are defined
specifically for the transaction management contract:

public interface jakarta.resource.spi.ManagedConnection {
public XAResource getXAResource() throws ResourceException;

public LocalTransaction getlLocalTransaction()
throws ResourceException;

A Managed Connection instance provides access to a pair of interfaces:

Jakarta Connectors 83

8.3. Transaction Management Contract

javax.transaction.xa.XAResource and jakarta.resource.spi.LocalTransaction .

Depending on the transaction support level of a resource adapter, these methods should raise
appropriate exceptions. For example, if the transaction support level for a resource adapter is
NoTransaction , an invocation of getXAResource method should throw a ResourceException . Refer to
Exceptions for details on the exception hierarchy.

The following figure illustrates this concept:

ManagedConnection Interface for Transaction Management

Resource Adapter

LocalTransaction
create
Se new
.

- .
“« (instance

Application Server

A\ 4

. getLocalTransaction R Se

N N
. getXAResource :
. N 7
. . .°
. . R4 Managed
. 9
Lo Connection
o L4
L4
L4
L4
o L4
o,e" (create
% new
rd

XAResource o instance

Transaction
Manager

EIS specific

Enterprise Information System (EIS)

The transaction manager uses the XAResource interface to associate and dissociate a transaction with
the underlying EIS resource manager instance and to perform a two-phase commit protocol. The

transaction manager does not directly use the ManagedConnection interface. The next section
describes the XAResource interface in more detail.

The application server uses the LocalTransaction interface to manage local transactions.

8.3.2. Interface: XAResource
The javax.transaction.xa.XAResource interface is a Java mapping of the industry standard XA interface

based on X/Open CAE specification (see X/Open CAE Specification — Distributed Transaction Processing:
the XA Specification, X/Open document).

84 Jakarta Connectors

8.3. Transaction Management Contract

The following code extract shows the interface specification for the XAResource interface. For more
details and API documentation, refer to the Jakarta Transaction (see Jakarta™ Transaction
Specification]) and XA (see <<a9729, X/Open CAE Specification — Distributed Transaction Processing:
the XA Specification, X/Open document) specifications:

public interface
javax.transaction.xa.XAResource {

public void commit(Xid xid, boolean onePhase) throws XAException;
public void end(Xid xid, int flags) throws XAException;

public void forget(Xid xid) throws XAException;

public int prepare(Xid xid) throws XAException;

public Xid[] recover(int flag) throws XAException;

public void rollback(Xid xid) throws XAException;

public void start(Xid xid, int flags) throws XAException;

8.3.2.1. Implementation

A resource adapter for an EIS resource manager implements the XAResource interface. This interface
enables the resource manager to participate in transactions that are controlled and coordinated by an
external transaction manager. The transaction manager uses the XAResource interface to
communicate transaction association, completion, and recovery to the resource manager.

A resource adapter typically implements the XAResource interface using a low-level library available
for the underlying EIS resource manager. This low-level library either supports a native
implementation of the XA interface or provides a proprietary vendor-specific interface for transaction
management.

A resource adapter is responsible for maintaining a 1-1 relationship between the ManagedConnection
and XAResource instances. Each time a ManagedConnection.getXAResource method is called, the same
XAResource instance has to be returned.

A transaction manager can use any XAResource instance (if it refers to the proper resource manager
instance) to initiate transaction completion. The XAResource instance used during the transaction
completion process need not be the one initially enlisted with the transaction manager for this
transaction.

Jakarta Connectors 85

8.4. Relationship to Jakarta Transaction and JTS

8.3.3. Interface: LocalTransaction

The following code extract shows the jakarta.resource.spi.LocalTransaction interface:

public interface
jakarta.resource.spi.LocalTransaction {

public void begin() throws ResourceException;
public void commit() throws ResourceException;

public void rollback() throws ResourceException;

A resource adapter implements the LocalTransaction interface to provide support for local
transactions that are performed on the underlying resource manager. An application server uses the
LocalTransaction interface to manage local transactions for a resource manager.

Interface: LocalTransaction has more details on the local transaction management contract.

8.4. Relationship to Jakarta Transaction and JTS

The Jakarta Transaction (see Jakarta™ Transaction Specification) is a specification of interfaces
between a transaction manager and the other parties involved in a distributed transaction processing
system: application programs, resource managers, and an application server.

The Java™ Transaction Service (JTS) API is a Java binding of the Common Object Request Broker
Architecture (CORBA) Object Transaction Service (OTS) 1.1 specification. JTS provides transaction
interoperability using the standard Internet Inter-ORB Protocol (IIOP) for transaction propagation
between servers. The JTS API is intended for vendors who implement transaction processing
infrastructure for enterprise middleware. For example, an application server vendor can use a JTS
implementation as the underlying transaction manager.

8.4.1. Jakarta Transaction Interfaces

The application server uses the jakarta.transaction.TransactionManager and
jakarta.transaction.Transaction interfaces, specified in the Jakarta Transaction specification, for its
contract with the transaction manager.

The application server uses the jakarta.transaction.TransactionManager interface to control the
transaction boundaries on behalf of the application components that are being managed by the
application server. For example, an Jakarta Enterprise Beans container manages the transaction states
for transactional Jakarta Enterprise Beans components. The Jakarta Enterprise Beans container uses
the TransactionManager interface to demarcate transaction boundaries based on the calling thread’s

86 Jakarta Connectors

8.5. Object Diagram

transaction context.

The application server also uses the jakarta.transaction.Transaction interface to enlist and delist
transactional connections with the transaction manager. This enables the transaction manager to
coordinate transactional work performed by all enlisted resource managers within a transaction.

8.5. Object Diagram

The following figure shows the object instances and their interactions related to transaction
management. Since the transaction management contract builds upon the connection management
contract, the following diagram does not show object interactions that have already been discussed in
Connection Management.

Object Diagram: Transaction Management

Jakarta Connectors 87

8.6. XAResource-based Transaction Contract

Application Component

Application Server .. Resource Adapter
ooo '.‘o..o.o.o.o.o.o.ooococo-
ConnectionManager e *e Connection
. . e
. .
. .
* . . .
MY . A}
. .
.
.
.
.
\}
A
.
. A
LocalTransaction . '
ResourceAdapter .
e .
specific ¢
. [
. ’
S . ’
7 . » create
-~ ’
. Seo . s, new
. . ’ i
© create hew instance . . instance
- . 4
.. c,

© -+ getLocalTransaction

.
.
Pool Manager . * getXAResource . .
. : N P
. .
.

. Managed

create ,* + Connection

L4
new, ¢
_inStance

XAResource 4

L L’
Transaction —
Manager ..
. .. EIS specific
‘ Connection Event notifications

.......................................

o

EIS specific

ConnectionEventListener

e Architected Interface

Enterprise Information System (EIS)

°°°° Instantiation

----- Implementation Specific

8.6. XAResource-based Transaction Contract

This section specifies detailed requirements for a resource manager and a transaction manager for the
XAResource -based transaction management contract. In this section, the following abbreviations are
used: RM (Resource Manager), TM (Transaction Manager), 1PC (one-phase commit protocol), and 2PC
(two-phase commit protocol).

8.6.1. Scenarios Supported

The following table specifies various transaction management scenarios and mentions whether these
scenarios are within the scope of Jakarta Connectors.

Table 1. Table

88 Jakarta Connectors

Description

TM does two-phase commit (2PC) on RMs that
support two-phase commit (as defined in RM’s
requirements for XAResource implementation in
the subsection below)

Examples of RM: Oracle and DB2 installations that
support 2PC in their XAResource implementations.

TM does one-phase commit (1PC) optimization on
the only RM involved in a transaction. RM
supports 2PC in its XAResource implementation
(as defined in RM’s requirements for the
XAResource implementation in the subsection
below).

Example of RM: DB2 installation that supports 2PC
in its XAResource implementation.

TM does one-phase commit optimization on the
only RM involved in a transaction. RM does not
support 2PC but supports 1PC in its XAResource
implementation.

Example of RM: ERP system or mainframe TP
system that does not support 2PC, but implements
1PC in its XAResource implementation as defined
in the RM’s requirements for 1PC.

TM does last-resource commit optimization across
multiple RMs involved in a transaction—RMs that
support 2PC (for example: Oracle and DB2) and a
single RM that supports only 1PC (for example: an
ERP system).

More than one RM that support only 1PC involved
in a transaction with none or multiple 2PC
enabled RMs

8.6.2. Resource Adapter Requirements

8.6. XAResource-based Transaction Contract

Supported / NotSupported

Supported based on TM’s requirement to be
Jakarta Transaction/JTS and X/Open compliant,
and RM’s support for 2PC in the XAResource
interface.

Supported based on TM’s requirement to be
Jakarta Transaction/JTS and X/Open compliant,
and RM’s support for the XAResource interface.

Note: This scenario will also work if TM does 2PC
on RM.

Supported by requiring that TM must support 1PC
optimization. A successful transaction
coordination of 1PC only RM comes as a result of
required 1PC optimization for a TM.

The rationale behind this requirement is that this
scenario will be an important scenario to support
for Jakarta Connectors.

Out of the scope of the Jakarta Connectors
specification

Out of the scope of the Jakarta Connectors
specification

Jakarta Connectors does not require that all resource adapters must support Jakarta Transaction

XAResource based transaction contract.

If a resource adapter decides to support an XAResource based contract, then Jakarta Connectors places
certain requirements on a resource adapter and its underlying resource manager (RM).

The following requirements refer to a resource adapter and its resource manager together as a
resource manager (RM). The division of responsibility between a resource adapter and its underlying
resource manager for supporting the transaction contract is implementation-specific and is out of the

Jakarta Connectors 89

8.6. XAResource-based Transaction Contract

scope of Jakarta Connectors.

These requirements assume that a transaction manager ™ supports Jakarta Transaction/XA and JTS
requirements.

The following set of requirements are based on the Jakarta Transaction and XA specifications and
should be read in conjunction with these specifications. These detailed requirements are included in
this document to clearly specify the requirements from the Jakarta Connectors perspective.

8.6.2.1. General

If an RM supports an XAResource contract, then it must support the one-phase commit protocol by
implementing XAResource.commit when the boolean flag onePhase is set to True . The RM is not
required to implement the two-phase commit protocol support in its XAResource implementation.

However, if an RM supports the two-phase commit protocol, then the RM must use the XAResource
interface for supporting the two-phase commit protocol.

An RM is allowed to combine the implementation of 2PC protocol with 1PC optimization by
implementing XAResource.commit (onePhase = True) in addition to the implementation
requirements for 2PC.

8.6.2.2. One-phase Commit

An RM should allow XAResource.commit (onePhase = True) even if it has not received
XAResource.prepare for the transaction branch.

If the RM fails to commit a transaction during a 1PC commit, then the RM should throw one of the
XA_RB* exceptions. In the exception case, an RM should roll back the transaction branch’s work
and release all held RM resources.

The RM is responsible for deciding the outcome of a transaction branch on an XA Resource.commit
method. The RM can discard knowledge of the transaction branch once it returns from the commit
call.

The RM is not required to maintain knowledge of transaction branches to support failure recovery
for the TM.

If an XAResource.prepare method is called on an RM that supports only one-phase commit, then the
RM should throw an XAException with XAER_PROTO or XA_RB*flag .

The RM should return an empty list of XIDs for XAResource.recover , because the RM is not
required to maintain stable knowledge about transaction branches.

8.6.2.3. Two-phase Commit

90

If the RM supports 2PC, then its implementation of 2PC must be compliant with the 2PC protocol
definition with presumed rollback as specified in the OSI TP (Transaction Protocol defined by ISO
(IS092)) specification.

The RM must implement the XAResource.prepare method and must be able to report whether it can

Jakarta Connectors

8.6. XAResource-based Transaction Contract

guarantee its ability to commit the transaction branch. If the RM reports that it can, the RM must
hold and record in a stable way all the resources necessary to commit the branch. It must hold all
these resources until the TM directs it to commit or rollback the branch.

* An RM that reports a heuristic completion to the TM must not discard its knowledge of the
transaction branch. The RM should discard its knowledge of the branch only when the TM calls
XAResource.forget . The RM must notify the TM of all heuristic decisions.

* On the TM’s XAResource.commit and XAResource.rollback calls, the RM is allowed to report through
an XAException that it has heuristically completed the transaction branch. This feature is optional.

A TM supporting the OSI TP specification uses the one-phase commit optimization by default to
manage an RM that is the only resource involved in the transaction. The mechanism to identify to the
TM a particular RM that only supports 1PC is beyond the scope of this specification.

8.6.2.4. Transaction Association and Calling Protocol

* The RM XAResource implementation must support XAResource.start and XAResource.end for
association and disassociation of a transaction, as represented by, unique XID, with recoverable
units of work being done on the RM.

* The RM must ensure that the TM invokes XAResource calls in the legal sequence, and must return
XAER _PROTO or another suitable error if the caller TM violates the state tables, as defined in
Chapter 6 of the XA specification (see Jakarta™ Transaction Specification, Version 2.0).

8.6.2.5. Unilateral Roll-back

* The RM need not wait for global transaction completion to report an error. The RM can return a
rollback-only flag as a result of any XAResource.start or XAResource.end call. This can happen
anytime except after a successful prepare .

* The RM is allowed to unilaterally rollback and forget a transaction branch any time before it
prepares it.

8.6.2.6. Read-Only Optimization

Support for read-only optimization is optional for RM implementation. An RM can respond to the TM’s
request to prepare a transaction by asserting that the RM was not asked to update shared resources in
this transaction branch. This response concludes the RM’s involvement in the transaction, and the RM
can release all resources and discard its knowledge of the transaction.

8.6.2.7. XID Support

* The RM must accept XIDs from TMs. The RM is responsible for using the XID to maintain an
association between a transaction branch and recoverable units of work done by the application
programs.

* The RM must not alter in any way the bits associated in the data portion of an XID. For example, if
an RM remotely communicates an XID, it must ensure that the data bits of the XID are not altered

Jakarta Connectors 91

8.6. XAResource-based Transaction Contract

by the communication process.

8.6.2.8. Support for Failure Recovery

A full Jakarta Transaction compliant XAResource implementation that supports 2PC must maintain
the status of all transaction branches in which it is involved. After responding affirmatively to the
TM prepare call, an RM should not erase its knowledge of the branch or of the work done in
support of the branch until it successfully receives a TM’s invocation to commit or rollback the
branch.

» If an RM that supports 2PC heuristically completes a branch, it should not forget a branch until the
TM explicitly tells it to by calling XAResource.forget .

* On the TM’s XAResource.recover call, an RM that supports 2PC must return a list of all transaction
branches that it has prepared or has heuristically completed.

* When an RM recovers from its own failure, it must recover prepared and heuristically completed
branches. It should discard its knowledge of all other branches.

8.6.3. Transaction Manager Requirements

The following section specifies requirements of a TM. This section assumes that the TM is compliant
with Jakarta Transaction/JTS and X/Open (see X/Open CAE Specification — Distributed Transaction
Processing: the XA Specification, X/Open document) specifications.

8.6.3.1. Interfaces

The TM must use the XAResource interface supported by an RM for transaction coordination and
recovery. The TM must be written to handle consistently any information or status that an RM can
legally return. The TM must assume that it can support RMs that have different capabilities as allowed
by the RM requirements specification section, for instance RMs that make heuristic decisions and RMs
that use the read-only optimization. [Requirement derived from Section 7.3, XA specification]

8.6.3.2. XID Requirements

The TM must generate XIDs conforming to the structure defined in section 4.2 on page 19 of the XA
specification (see Jakarta™ Transaction Specification, Version 2.0). The generated XIDs must be globally
unique and must adequately describe a transaction branch.

8.6.3.3. One-phase Commit Optimization

* The TM must support one-phase commit protocol optimization. The TM uses the 1PC optimization
when the TM knows there is only one RM registered in a transaction that is making changes to
shared resources. In this optimization, the TM makes its phase 2 commit request to that RM without
having made a phase 1 prepare request.

* The TM is not required to record such transactions in a stable manner, and in some failure cases,
the TM may not record the outcome of the transaction completion.

92 Jakarta Connectors

8.6. XAResource-based Transaction Contract

8.6.3.4. Implementation Options

The support of last-resource optimization is an implementation-specific option for a TM. A detailed
specification of TM and RM requirements for this optimization is outside the scope of Jakarta
Connectors.

8.6.4. Scenario: Transactional Setup for a ManagedConnection

The following object interactions are involved in the scenario shown in OID: Transactional Setup For
Newly Created ManagedConnection Instances.

1.

10.

The runtime scenario begins with a client method invocation on an Jakarta Enterprise Beans
instance. This invocation has a transaction context, represented by a unique transaction Xid ,
associated with it if the invocation came from a client that was already participating in the
transaction. Alternatively, the Jakarta Enterprise Beans container starts a transaction before
dispatching the client request to the Jakarta Enterprise Beans method.

The Jakarta Enterprise Beans instance calls the getConnection method on the ConnectionFactory
instance. The resource adapter delegates the connection request to the application server using the
connection management contract. OID: Connection Pool Management with Connection Matching
explains this step.

The application server gains control and handles the connection allocation request.

To handle the connection allocation request, the application server gets a Managed-Connection
instance either from the connection pool or creates a new Managed-Connection instance. OID:
Connection Pool Management with Connection Matching describes this step.

The application server registers itself as a ConnectionEventListener with the ManagedConnection
instance. This enables the application server to receive notifications for various events on this
connection instance. The application server uses these event notifications to manage connection
pooling and transactions.

Based on the current transaction context associated with the connection-requesting thread and the
Jakarta Enterprise Beans instance, the application server decides whether or not the transaction
manager will participate in the coordination of the currently active transaction.

If the application server decides that the transaction manager will manage the current transaction,
it conducts the following transactional setup on the ManagedConnection instance:

The application server invokes the ManagedConnection.getXAResource method to get the
XAResource instance associated with the ManagedConnection instance.

The application server enlists the XAResource instance with the transaction manager for the
current transaction context. The application server uses the Transaction . enlistResource method
(specified in the Jakarta Transaction specification) to enlist the XAResource instance with the
transaction manager. This enlistment informs the transaction manager about the resource
manager instance participating in the transaction.

The transaction manager invokes XAResource.start to associate the current transaction with the
underlying resource manager instance. This enables the transaction manager to inform the

Jakarta Connectors 93

8.6. XAResource-based Transaction Contract

participating resource manager that all units of work performed by the application on the
underlying ManagedConnection instance should now be associated with this transaction.

11. The application server calls the ManagedConnection.getConnection method to get a new
application-level connection handle. The underlying physical connection is represented by a
ManagedConnection instance.

12. The application server returns the connection handle to the resource adapter. The resource
adapter then passes the connection handle to the application component that had initiated the
connection request.

OID: Transactional Setup For Newly Created ManagedConnection Instances

Resource Adapter Resource Adapter

ManagedConnectionFactory
XAResources
ManagedConnection

Application jakarta.resource.xxi. Transaction

Component ConnectionFactory

Application
Manager

Server

getConnection

A\ 4

ConnectionManager.allocateConnection

AN
7

Application server gets a
ManagedConnection instance from the
connection pool or creates a new instance.

getConnection(Subject, ConnectionRequestInfo)

|, return jakarta.resource.cci.Connection
N

return jakarta.resource.cci.Connection
L

\

94 Jakarta Connectors

8.6. XAResource-based Transaction Contract

8.6.5. Scenario: Connection Close and Jakarta Transaction Transactional
Cleanup

For each ManagedConnection instance in the pool, the application server registers a
ConnectionEventListener instance to receive specific events on the connection. The connection event
callback mechanism enables the application server to manage connection pooling and transactions.

Object Diagram: Connection Management Architecture describes the following steps when an
application component closes a connection:

1. The application component releases a Connection instance by calling the close method. The
Connection instance delegates the connection close request to its associated ManagedConnection
instance. A ManagedConnection must not alter any state on the physical connection while handling
a delegated connection close request.

2. The ManagedConnection instance notifies all its registered listeners of the application’s connection
close request using the ConnectionEventListener . connectionClosed method. It passes a
ConnectionEvent instance with the event type set to CONNECTION_CLOSED.

3. On receiving the connection close notification, the application server performs transactional
cleanup for the ManagedConnection instance. If the ManagedConnection instance was participating
in a transaction manager-enlisted Jakarta Transactions transaction, the application server takes the
following steps:

4. The application server dissociates the XAResource instance, corresponding to the
ManagedConnection instance, from the transaction manager wusing the method
Transaction.delistResource .

5. The transaction manager calls XAResource.end(Xid,flag) to inform the resource manager that any
further operations on the ManagedConnection instance are no longer associated with the
transaction, represented by the Xid passed in XAResource.end call. This method invocation
dissociates the transaction from the resource manager instance.

6. After the transaction completes, the application server initiates a cleanup of the physical
connection instance by calling ManagedConnection.cleanup method. After calling the method
cleanup on the ManagedConnection instance, the application server returns the ManagedConnection
instance to the connection pool.

7. The application server can now use the ManagedConnection instance to handle future connection
allocation requests from either the same or another component instance.

OID: Connection Close and Transactional Cleanup

Jakarta Connectors 95

8.6. XAResource-based Transaction Contract

Resource Adapter Resource Adapter

ManagedConnectionFactory
XAResources
ManagedConnection

Application jakarta.resource.cci. Transaction

Component Connection

Application
Manager

Server

Internal: Resource Adapter implementation specific

AN
4

ManagedConnection

notifies all registered
ConnectionEvent-Listener

connectionClosed(ConnectionEvent: CONNECTION_CLOSED)
y2

A\ 4

m”?

...

ManagedConnection.cleanup

A\ 4

Application Server returns
ManagedConnection instance

to the connection pool

8.6.6. OID: Transaction Completion

The scenario in the following figure illustrates the steps taken by the transaction manager to commit a
transaction across multiple resource manager instances. These steps are executed after the transaction
manager calls the XAResource.end method for each enlisted resource manager instance.

The following steps happen in this scenario:

1. The transaction manager calls XAResource.prepare to begin the first phase of the transaction
completion protocol. The transaction manager can call any XAResource instance associated with
the proper underlying resource manager instance, and is not restricted to the XAResource instance

96 Jakarta Connectors

8.7. Local Transaction Management Contract

initially involved with the transaction. The application server can assume that all XAResource
instances produced by a ManagedConnectionFactory instance refer to the same underlying
resource manager instance.

2. Assuming all resource manager instances involved in the transaction agree to commit, the
transaction manager calls XAResource.commit to commit the transaction. Otherwise, the
transaction manager calls XAResource.rollback .

OID: Transaction Completion

Resource Manager Instance Resource Manager Instance

Transaction

Manager XAResource XAResource

XAResource prepare

XAResource prepare

. . .
. .
. . .
. . .
. . .
. . .
: _
.
. . .
.
.

XAResource commit

A\ 4

XAResource commit

...

8.7. Local Transaction Management Contract

The main motivation for defining a local transaction contract between an application server and a
resource manager is to enable an application server to manage resource manager local transactions,
hereafter called local transactions.

The local transaction management contract has two parts:

* The application server uses the jakarta.resource.spi.LocalTransaction interface to manage local

Jakarta Connectors 97

8.7. Local Transaction Management Contract

transactions transparently to an application component. The scenarios in Transaction Scenarios
illustrate this part of the local transaction management contract.

» The other part of the contract relates to notifications for local transaction-related events. If the
resource adapter supports a local transaction demarcation API, for example,
jakarta.resource.cci.LocalTransaction for the Common Client Interface, the resource adapter is
required to notify the application server of the events (transaction begin, commit, and rollback)
related to the local transaction. An application server uses this part of the contract, as explained in
Scenarios: Local Transaction Management.

8.7.1. Interface: LocalTransaction

The jakarta.resource.spi.LocalTransaction interface defines the contract between an application server
and resource adapter for local transaction management. This interface is defined in Interface:
LocalTransaction.

8.7.2. Interface: ConnectionEventListener

An application server implements the jakarta.resource.spi.ConnectionEventListener interface. It
registers this listener instance with the ManagedConnection instance by using
ManagedConnection.addConnectionEventListener method.

The following code extract specifies the ConnectionEventListener interface related to the local
transaction management contract:

public interface
jakarta.resource.spi.ConnectionEventListener {

// Local Transaction Management related events
public void localTransactionStarted(ConnectionEvent event);
public void localTransactionCommitted(ConnectionEvent event);

public void localTransactionRolledback(ConnectionEvent event);

The ManagedConnection instance notifies its registered listeners for transaction related events by
calling the methods localTransactionStarted, localTransactionCommitted, and
localTransactionRolledback.

The ConnectionEvent class defines the following types of event notifications related to the local
transaction management contract:

98 Jakarta Connectors

8.8. Scenarios: Local Transaction Management

* LOCAL_TRANSACTION_STARTED - a local transaction was started using the ManagedConnection
instance

* LOCAL_TRANSACTION_COMMITTED - a local transaction was committed wusing the
ManagedConnection instance

* LOCAL_TRANSACTION_ROLLEDBACK - a local transaction was rolled back using the
ManagedConnection instance

8.7.2.1. Requirements

The connector specification requires an application server to implement the ConnectionEventListener
interface and handle local transaction related events. This enables the application server to achieve
local transaction cleanup and transaction serial interleaving, as illustrated in Scenarios: Local
Transaction Management. The connector specification provides the necessary mechanisms for
transaction management. Whether these mechanisms are used in an application server depends on
the application server’s implementation of the transaction requirements of the Jakarta EE component
specifications.

The resource adapter must send local transaction events through the ConnectionEventListener
interface when an application component starts a local transaction using the application level
transaction demarcation interface. An exception to this requirement is when the transaction
demarcation API supports the concept of an implicit begin of a local transaction. The JDBC API is an
example where there is no explicit local transaction begin method.

However, resource adapters that allow implicit begin of a local transaction, for instance, JDBC drivers,
are strongly encouraged to provide support for local transaction events. This may be required in a
future release of the specification.

The resource adapter must not send local transaction events for local transactions managed by the
container.

8.8. Scenarios: Local Transaction Management

This section illustrates how an application server uses the event notifications from the resource
adapter to manage local transactions and to restrict illegal transaction demarcations by an application
component.

In these scenarios, an application component starts a local transaction using an application-level
transaction demarcation interface, for example, jakarta.resource.cci.LocalTransaction as defined in the
CCI, supported by the resource adapter. The resource adapter, in its implementation of the transaction
demarcation interface, sends event notifications related to the local transaction, namely, local
transaction begin, commit, and rollback. The application server is notified of these local transaction-
related events through the ConnectionEventListener mechanism.

Jakarta Connectors 99

8.8. Scenarios: Local Transaction Management

8.8.1. Local Transaction Cleanup

A stateless session bean with bean-managed transaction demarcation starts a local transaction in a
method invocation. It returns from the business method without completing the local transaction.

The application server implements the ConnectionEventListener interface. The resource adapter
notifies the application server with a LOCAL_TRANSACTION_STARTED event when the local
transaction is started by the session bean instance.

When the session bean instance returns from the method invocation without completing the local
transaction, the application server detects this as an incomplete local transaction because it has not
received any matching LOCAL_TRANSACTION_COMMITTED or LOCAL_TRANSACTION_ROLLEDBACK
events from the resource adapter.

On detecting an incomplete local transaction, the application server aborts the transaction, terminates
the stateless session bean instance, and throws an exception to the client.

8.8.2. Component Termination

The application server terminates a component instance, for example, because of some system
exception in a method invocation.

On termination of a component instance, the application server cleans up all ManagedConnection
instances being used by this component instance. The cleanup of a connection involves resetting all
local transaction and client-specific state. This state is maintained internal to the ManagedConnection
instance.

The application server initiates a cleanup of a ManagedConnection instance by calling
ManagedConnection.cleanup . After cleanup, the application server returns this connection to the pool
to serve future allocation requests.

8.8.3. Transaction Interleaving

The application server uses the connection event listener mechanism, specified through the interfaces
ConnectionEventListener and ConnectionEvent , to flag illegal cases of transaction demarcation. The
application server implements the ConnectionEventListener interface to support this scenario.

The following subsection illustrates a scenario for component-managed transaction demarcation.

8.8.4. Scenario

A Jakarta Enterprise Beans component with bean managed transaction demarcation starts a local
transaction using the application-level transaction demarcation interface, for example,
jakarta.resource.cci.LocalTransaction as defined in the CCI, supported by the resource adapter. It then
calls the UserTransaction.begin method to start a Jakarta Transactions transaction before it has
completed the local transaction.

100 Jakarta Connectors

8.9. Connection Sharing

In this scenario, the Jakarta Enterprise Beans component has started but not completed the local
transaction. When the application component attempts to start a Jakarta Transactions transaction by
invoking the UserTransaction.begin method, the application server detects it as a transaction
demarcation error and throws an exception from the UserTransaction.begin method.

When the application component starts the local transaction, the resource adapter notifies the
application server of the LOCAL_TRANSACTION_STARTED connection event. When the component
invokes the UserTransaction.begin method, the application server detects an error condition, because it
has not received the matching LOCAL_TRANSACTION _COMMITTED or
LOCAL_TRANSACTION_ROLLEDBACK event from the resource adapter for the currently active local
transaction.

8.9. Connection Sharing

Sharing connections typically results in efficient use of resources and better performance. An
application can indicate the ability to share its various resource references, or connections, in its
deployment descriptor. A connection can be marked either as shareable or unshareable. The default is
shareable.

When multiple shareable connections x and y acquired by an application are used within a global
transaction scope (for instance, container-managed or bean-managed), the application server must
provide a single shared connection behavior under the following conditions:

* x and y are collocated in a single Java Virtual Machine process address space

* X and y are using a single transactional resource manager

* x and y have identical properties

* x and y are marked as shareable

* X and y are used within a container-managed or bean-managed transaction scope
The ability to share is unspecified for connections marked shareable that are used outside a global

transaction scope. Sharing is not supported for connections obtained from a non-transactional _
resource adapter, that is, transaction support level is _NoTransaction .

The intent of the connection sharing requirement is to avoid resource manager lock contentions and
read isolation problems, and thus ensure portable behavior for transactional applications. The
application server may implement the connection sharing semantics either using a single shared
connection or through other mechanisms4.

If a connection is marked as shareable , it must be transparent to the application whether a single
shared connection is used or not. The application must not make assumptions about a single shared
connection being used, and hence must use the connection in a shareable manner.

However, a Jakarta EE application component that intends to use a connection in an unshareable way
must leave a deployment hint to that effect, which will prevent the connection from being shared by

Jakarta Connectors 101

#a10025

8.9. Connection Sharing

the container. Examples of unshareable usage of a connection include changing the security attributes,
isolation levels, character settings, and localization configuration.

Containers must not attempt to share connections that are marked unshareable .

Jakarta EE application components may use the optional deployment descriptor element res-sharing-
scope or the shareable annotation element of Resource annotation defined in the Common Annotations
specification (see Jakarta™ Annotations 2.1), to indicate whether a connection to a resource manager is
shareable or unshareable. Containers must assume connections to be shareable if no deployment hint
is provided. Refer to the Enterprise Beans specification (see Jakarta™ Enterprise Beans Specification,
Version 4.0) and the servlet specification (see Jakarta™ Servlet Specification, Version 6.0) for a
description of the deployment descriptor element.

Jakarta EE application components may cache connection objects and reuse them across multiple
transactions. Containers that provide connection sharing should transparently switch such cached
connection objects, at dispatch time, to point to an appropriate shared connection with the correct
transaction scope. Refer to Connection Association for more details on connection association.

Refer to Transaction Scenarios for a special case of connection sharing as applied to resource adapters
that support local transactions.

8.9.1. Sharing Violation Detection

A resource adapter may detect sharing violations. Any operation on a shareable connection which
violates shareability is a sharing violation, for example, mutable operations like changing connection
attributes, security settings, isolation levels, etc.

When such a mutable operation is performed on a ManagedConnection , it may throw a
SharingViolationException when both the following conditions are true:

* The number of connection handle objects associated with the ManagedConnection is more than
one.

* The ManagedConnection is associated with a transaction, either local or XA.

Further, a resource adapter may reject creation of a connection handle, by throwing a
SharingViolationException, if the connection is already in a unshareable condition. Any mutable
operation performed on a connection makes it unshareable.

8.9.1.1. Scenario 1

Application component A gets a shareable connection to a resource and invokes component B which
also gets a shareable connection to the same resource. Both A and B are involved in a common
transaction scope, either local or XA. The application server shares the connections acquired by both A
and B. From this point onwards, any attempt to change a mutable property, such as isolation level, by
either component, results in a SharingViolationException being thrown by the resource adapter to the
offending component.

102 Jakarta Connectors

8.10. Transaction Scenarios

8.9.1.2. Scenario 2

Application component A gets a shareable connection to a resource. A is involved in a transaction,
either local or XA. A then modifies one of the mutable properties of the resource, such as isolation
level. This makes the connection unshareable. The resource adapter does not throw an exception since
only one connection handle is present.

Later, A invokes B under the same transaction scope. B also attempts to acquire a shareable connection
to the same resource. The application server chooses to share the connection that is already in use by
A. At this point, the resource adapter throws a SharingViolationException to B since sharing had been
attempted on an unshareable connection. The resource adapter does this by saving that the connection
had been made unshareable earlier.

The resource adapter might throw a SharingViolationException to B, even if A had closed its
connection handle before it invoked B, since the connection acquired by A had become unshareable.

8.10. Transaction Scenarios

This section specifies requirements for various transaction scenarios.

8.10.1. Requirements

The Jakarta EE platform specification (see Jakarta™ EE Platform Specification Version 10) identifies the
following as transactional resources:

* JDBC connections
» Jakarta Messaging sessions

* Resource adapter connections at the XATransaction level

The Jakarta EE platform specification requires that Jakarta EE product providers must transparently
support transactions that span multiple components and transactional resources. These requirements
must be met regardless of whether a Jakarta EE product is implemented as a single process, multiple
processes on the same node, or multiple processes on multiple nodes.

In addition, Jakarta EE product providers must support transactional applications that are comprised
of servlets or JSP pages accessing multiple enterprise beans within a single transaction. Each
component may also acquire one or more connections to access transactional resources. Jakarta EE
product providers must support scenarios where multiple components in an application access
transactional resources as part of a single transaction.

The Jakarta EE platform specification requires Jakarta EE platform products to support resource
adapters at the XATransaction level as a transactional resource. It must be possible to access such
resource adapters from multiple application components within a single transaction.

Jakarta Connectors has an additional requirement that is applicable to resource adapters that support
local transactions. Note that both LocalTransaction and XATransaction resource adapters support local

Jakarta Connectors 103

8.10. Transaction Scenarios

transactions, and they are both referred to as “local transaction capable” resource adapters in the
section below.

Application server must use a single local transaction in a scenario where the following conditions
hold:

Multiple components are involved in a global transaction scope.

* All components use a single resource adapter that is local transaction capable. There is no other
XAResource or local transaction capable resource adapter involved in the global transaction scope.

* All components get connections to the same EIS instance.

* Components have not specified the res-sharing-scope flag as unshareable . This condition accounts
for potential sharing of connections in terms of security context, client-specific connection
parameters, and EIS specific configuration.

Note that this requirement does not apply to a local transaction that is started by a component using an
application level transaction demarcation API that is specific to a resource adapter.

Application server determines this scenario in an implementation-specific manner.

Application server may use connection sharing mechanisms to implement this local transaction
requirement. Please refer to Scenario: Local Transaction for an illustration.

Application servers must support transaction scenarios where access to a non-transactional resource is
combined with access to one or more transactional resources within a single transaction. For example,
in a container-managed transaction, an Enterprise Bean accesses JDBC and Jakarta Messaging
resources, and also accesses a non-transactional EIS using its resource adapter. If there is a failure
during the above scenario, transactional resource managers operating under the transaction should
rollback, but the recovery of the non-transactional resource is unspecified in this specification.

The application server is not required to support any additional transaction scenarios beyond the
above set of scenarios. A Jakarta EE application should not depend on an application server’s support
for any optional transaction scenarios. The application should also not depend on whether or not the
container detects that a specific optional transaction scenario is illegal. Any errors in optional
transaction scenarios are considered application programming errors.

8.10.2. Illustrative Scenarios

The following are examples of optional transaction scenarios. The following section also describes, in a
non-prescriptive manner, issues in support for these scenarios by an application server:

« Within a transaction, a Jakarta Enterprise Beans component acquires connections to two different
resource managers X and Y using their respective non-XA local transaction capable resource
adapters. The container cannot manage a local transaction across two different resource managers.
Since resource adapters and underlying resource managers are not XA capable, the container
cannot use XA in this case. However, a Jakarta EE application should not depend on the container

104 Jakarta Connectors

8.10. Transaction Scenarios

to detect this illegal scenario.

* Within a transaction, Jakarta Enterprise Beans component A acquires a connection to a resource
manager X using a non-XA local transaction capable resource adapter. Next, Enterprise Beans
component B under the same transaction context acquires a connection to a different resource
manager Y using a non-XA local transaction capable resource adapter The container cannot
manage a local transaction across two different resource managers. Since resource adapters are
not XA capable, the container cannot use XA in this case. However, a Jakarta EE application should
not depend on the container to detect this illegal scenario.

* Within a transaction, Jakarta Enterprise Beans component A acquires a connection to a resource
manager X using a non-XA local transaction capable resource adapter. Next, the same Enterprise
Bean (or Enterprise Bean B) under the same transaction context acquires a connection to a
different resource manager Y using an XA capable resource adapter This scenario may be
supported if the transaction manager supports last resource commit optimization. Since this
optimization feature is optional and not specified in the Jakarta Connectors, a Jakarta EE
application should not depend on support for this scenario.

* Within a transaction, Enterprise Bean A acquires a connection to a resource manager X using an
XA capable resource adapter. Next, the same Enterprise Beans component (or another Enterprise
Beans component B) under the same transaction context acquires a connection to a different
resource manager Y using a non-XA local transaction capable resource adapter This scenario may
be supported if the transaction manager supports last resource commit optimization. Since this
optimization feature is optional and not specified in Jakarta Connectors, a Jakarta EE application
should not depend on support for this scenario.

8.10.3. Scenario: Local Transaction

This scenario illustrates the use of the connection sharing mechanism to implement requirement for a
local transaction to span components.

In this scenario, two Jakarta Enterprise Beans components get connections to the same EIS resource
manager within a single transaction. Both Jakarta Enterprise Beans components use the same local
transaction capable resource adapter.

A local transaction is associated with a single physical connection. Both Jakarta Enterprise Beans
components in this scenario share the same physical connection under the local transaction scope. The
container has the responsibility of managing connection sharing as illustrated in this scenario.

To share a physical connection in the local transaction scope, the container assumes the connection to
be shareable unless it has been marked unshareable in the res-sharing-scope . The container uses
connection sharing in a manner that is transparent to application components.

In the following figure, the stateful session beans A and B have container-managed transaction
demarcation with the transaction attribute set to Required . Both A and B access a single EIS resource
manager as part of their business logic.

Scenario to illustrate Local Transaction Management

Jakarta Connectors 105

8.10. Transaction Scenarios

client
invocation

Application Server

Local Transaction

Contract

The following steps happen in this scenario:

1.

The client invokes a method on session bean A with no transaction context. In its method
implementation, the Enterprise Bean A acquires a connection to the EIS instance.

When acquiring the connection, the container starts a local transaction by invoking the begin
method of the jakarta.resource.spi.LocalTransaction instance. The local transaction is tied to the
ManagedConnection instance that is associated with the connection handle acquired by the
component in the previous step.

After the local transaction starts, any recoverable unit of work performed by A on the EIS resource
manager using the acquired connection is automatically included under the local transaction
context.

Session bean A now invokes a method on the session bean B instance. In this scenario, A does not
close the connection handle before invoking the method on B.

0 A container should ensure that the connection sharing mechanism is equally
applicable if A were to close the connection handle before calling the B instance.

. In the invoked method, B makes a request to acquire a connection to the same EIS resource

manager.

The container returns a connection handle using the same ManagedConnection instance that was
used for handling the connection request from A.

The container retains the association of the ManagedConnection instance with the local transaction
context across the method invocation from A to B. This means that any unit of work that B will
perform on the EIS resource manager using its acquired connection handle will be automatically
included as part of the current local transaction. The connection state, for example, any open
cursors, can also be retained across method invocations when the physical connection is shared.

Before the method invocation on B completes, B calls the close method on the connection handle.
The container should not initiate any cleanup of the physical connection at this time since there is
still an uncompleted local transaction associated with the shared physical connection. In this
scenario, the cleanup of a physical connection refers to the dissociation of the local transaction
context from the ManagedConnection instance. In the absence of support for Lazy Connection
Association (see Lazy Connection Association Optimization) from the resource adapter and the
application server, the component B should not cache the connection handle. See Guidelines for a

106 Jakarta Connectors

8.10. Transaction Scenarios

suggested scheme of obtaining and closing connection handles. A component caching a connection
handle in this scenario is not portably supported.

5. When A regains control, A can use the same connection handle, provided A had not called the close
method on the connection handle, to access EIS resources. All recoverable units of work on the EIS
resource manager will be included in the existing local transaction context.

If A closes the connection handle before calling B, and then reacquires the connection
handle when regaining control, the container should ensure that the local transaction
context stays associated with the shared connection.

1. A eventually calls the close method on its connection handle. The container gets a connection close
event notification based on the scenario described in Scenario: Connection Event Notifications and
Connection Close.

2. Since there is an incomplete local transaction associated with the underlying physical connection,
the container does not initiate a cleanup of the ManagedConnection on receiving the connection
close event notification. The container must still go through the completion process for the local
transaction.

3. When the business method invocation on A completes successfully without any application error,
the container starts the completion protocol for the local transaction. The container calls the
LocalTransaction.commit method to commit the transaction.

4. After the local transaction completes, the container initiates a cleanup of the physical connection
instance by calling the ManagedConnection.cleanup method.

The container should initiate cleanup of the ManagedConnection instance in the case

O where A does not call the close method on the connection handle before returning.
The container identifies the need for cleaning up the ManagedConnection instance
based on the scope of connection sharing.

1. On the cleanup method invocation, the ManagedConnection instance does a cleanup of its local
transaction related state and resets itself to a default state.

2. The container returns the physical connection to the pool for handling subsequent connection
requests.

Connection Sharing Across Component Instances

Jakarta Connectors 107

8.11. Connection Association

L Component Group that allows ManageConnection
Application Server Local Transaction Management

JEB A JEB B Lol M EEHan jakarta.resource.cci.Connection

Pre-condition: Container decides to perform connection sharing and local
transaction management

This container dispatches clients-initiated

business method to JEB A

.

Connection Request

D R R I Y

.
e 0o e s s eesee0ssc0s e s seesce e s s o o

e e e e s e e e s s 00 s s s 00 e s s ee s s 00 e e

D N)

ManagedConnection.getcbnnection

\ 4

LocalTransaction.begin

e e

W....

L I I I R I R R A I BN Y

.' PPPPPPPPPPPVVIVPPPVPPPPPPPPPP77722972727777777

e o0 0 e

ceece s

.

e e ce e s cscscses e s es s e geseseseseses e e e

Method Invocation -

R RS °

Connection Request

ManagedConnection.getcz)nnection

ceeeec s e soe
e e e ec s e e s s s ece s e g oo e

A4

o
"
.
.
.

e

.

B I I R R R I I S I A N A N A A Y

p

-3

2
.

.

. . .
R R R R R I R I I I R A AP SRR AP L PEP PP ST
.

close .
Ne
7
* close
. AN
: 7

Business methods without any application error

LocalTransaction.commit
.

oo

LocalTransaction Completed

R T T ™

...I.'
ceeee s

ManagedConnection.clea;nup

.

Connection cleanup done and
default state is restored

ccee e s s se s s
ccee e s s se s s
ce e e e s s s e e s e o o

e e
cc e e
cc e e

8.11. Connection Association

According to the connection management contract, a connection handle is created from a
ManagedConnection instance using the ManagedConnection . getConnection method. A connection
handle maintains an association with the underlying ManagedConnection instance.

108 Jakarta Connectors

8.11. Connection Association

8.11.1. Scenario

In the scenario shown in the following figure, session bean A acts as a client of entity bean C and
makes invocations on methods of entity bean C. Another session bean B also acts as a client of entity
bean C. The Cis an entity bean that may be shared across multiple clients.

A, B and C get connections to the same EIS. These Jakarta Enterprise Beans components have marked
res-sharing-scope for these connections to be shareable .

A and C define a connection sharing scope. Both A and C share the same physical connection across a
transaction that spans methods on A and C. Similarly, B and C define another connection sharing scope.
B and C also share the same physical connection across a transaction that spans two components.

Connection Sharing Scenario

<Session Bean>

dient = = —— JEB A

invocation <Sessmn Bean>

]EB (¢
<Session Bean> /
T 4 JEBB

invocation

Container

In this scenario, entity bean C obtains an application-level connection handle using the method
getConnection on the ConnectionFactory during its creation. Entity bean C holds the connection handle
during its lifetime.

A gets a connection handle and invokes a method on C. At a different time, B gets a connection handle
and invokes a method on C.

In both cases, depending on the connection sharing scope, defined in terms of the shared physical
ManagedConnection instance, in which C is called, the container supports a mechanism to associate the
connection handle held by C as part of its state with the current ManagedConnection instance.

State Diagram of Application-Level Connection Handle

-==«_ ManagedConnection.
. associateConnection

ManagedConnection.
getConnection Active

associated with a o

ManagedConnection

Connection.close

Closed
no longer associated with a
ManagedConnection

Jakarta Connectors 109

8.11. Connection Association

8.11.2. Connection Association

The interface ManagedConnection defines method associateConnection as follows:

public interface
jakarta.resource.spi.ManagedConnection {

public void associateConnection(Object connection) throws ResourceException;

The container typically uses the associateConnection method to change the association of an
application-level connection handle with a ManagedConnection instance. The container finds the right
ManagedConnection instance, depending on the connection sharing scope, and calls the
associateConnection method. To achieve this, the container is required to keep track of connection
handles acquired by component instances and ManagedConnection instances using an
implementation-specific mechanism. In order to set a Connection Handle as the active connection
handle (see Connection Sharing and Multiple Connection Handles), the container may also use the
associateConnection method to set the same ManagedConnection associated with the Connection
handle.

The associateConnection method implementation for a ManagedConnection should dissociate the
connection handle passed as a parameter from its currently associated ManagedConnection and
associate the new connection handle with itself.

Note that the switching of connection associations must happen only for connection handles and
ManagedConnection instances that correspond to the same ManagedConnectionFactory instance. The
container should enforce this restriction in an implementation-specific manner. If a container cannot
enforce the restriction, the container should not use the connection association mechanism.

8.11.3. Requirements

The container must provide a mechanism to change the association of a connection handle to different
ManagedConnection instances depending on the connection sharing and transaction scope. This
mechanism is used in scenarios where components hold on to connection handles across different
local transaction and connection sharing scopes.

The container may use the connection association mechanism in the XAResource -based transaction
management contract.

The resource adapter must implement the associateConnection method to support connection sharing.
The container makes a decision on whether or not to use the associateConnection method implemented
by a resource adapter. The support for this method is required independent of the transaction support

110 Jakarta Connectors

8.12. Local Transaction Optimization

level of the resource adapter. Note that the container makes the decision to invoke the
associateConnection method.

8.12. Local Transaction Optimization

If all the work done as a part of a transaction uses a single resource manager, the application server
can use a local transaction in place of an externally coordinated Jakarta Transactions transaction. The
use of a local transaction avoids the overhead of initiating a global transaction, and involving the TM
for transaction coordination, and leads to more optimized performance.

Since a typical application accesses a single resource manager, the local transaction optimization is a
useful performance enhancement for transaction management.

The application server manages local transaction optimization transparent to the Jakarta EE
application. Whenever a container-managed or bean-managed transaction is started, the container
may attempt local transaction optimization.

When the transaction begins, a container cannot determine beforehand whether or not the unit of
work done as part of this transaction will use a single resource manager. The container uses an
implementation-specific mechanism to achieve local transaction optimization. For example, the
container can choose to start a local transaction when the first resource manager is accessed and lazily
start a Jakarta Transactions transaction only when more than one resource managers are accessed in
an existing transaction. The mechanism through which the application server and its transaction
manager coordinates the initial local transaction and lazily started Jakarta Transaction transactions is
outside the scope of the connector specification. Refer to the Jakarta EE platform specification (see
Jakarta™ EE Platform Specification Version 10) for more details on the local transaction optimization.

8.12.1. Requirements

The container is not required to support the local transaction optimization.

8.13. Runtime Transaction Support Level Specification

A resource adapter may determine and classify the level of transaction support it can provide at
runtime. The resource adapter can use the configuration details, provided by a deployer, to determine
the transactional capabilities and the requirements of the underlying EIS and then specify the level of
transaction support at runtime.

Jakarta Connectors 111

8.13. Runtime Transaction Support Level Specification

package jakarta.resource.spi;

public interface TransactionSupport extends Serializable {

public enum TransactionSupportlLevel
{NoTransaction, LocalTransaction, XATransaction}

public TransactionSupportlLevel getTransactionSupport();

To specify the level of transaction support at runtime, a ManagedConnectionFactory must implement
the TransactionSupport interface. It is optional for the ManagedConnectionFactory to implement this
interface.

When a ManagedConnectionFactory does not implement this interface, the container must use the
resource adapter’s level of transaction support classification. The container must use the transaction
support specified in the merged result of the resource adapter’s deployment descriptor and Connector
annotations. Refer to Resource Adapter Provider for more information on the resource adapter
deployment descriptor and @Connector for more information on the Connector annotation. If the
resource adapter deployer has overridden the transaction support value, the overriden value must be
used. Refer to ResourceAdapter JavaBean Instance Configuration for details on resource adapter
configuration.

For ManagedConnectionFactory JavaBeans that implement the TransactionSupport interface, the
application server must perform the following prior to using the JavaBean. The application server
must call the getTransactionSupport method to determine its level of transaction support. The
application server must complete the configuration of the ManagedConnectionFactory instance (see
ManagedConnectionFactory JavaBean and Outbound Communication) before invoking the
getTransactionSupport method. The application server must use the value returned by the
getTransactionSupport method and ignore the value specified by the resource adapter deployment
descriptor/Connector annotation or the deployer configuration. The application server must provide
the transaction levels listed in TransactionSupport.TransactionSupportLevel enum, the same semantics
as the levels detailed in Resource Adapter.

A resource adapter must always return a level of transaction support whose ordinal value in the
TransactionSupport.TransactionSupportLevel enum is equal to or lesser than the resource adapter’s
transaction support classification.

112 Jakarta Connectors

8.14. Interface: TransactionSynchronizationRegistry

8.14. Interface: TransactionSynchronizationRegistry

The TransactionSynchronizationRegistry interface is defined in the Jakarta Transaction specification
(see Jakarta™ Transaction Specification, Version 2.0) and could be used by system level components to
interact with the transaction manager. This interface provides the ability to register synchronization
objects, associate resource objects with the current transaction, get the transaction context of the
current transaction, get current transaction status, and mark the current transaction for rollback.

This interface is implemented by the application server by a stateless service object. A resource
adapter may obtain the TransactionSynchronizationRegistry through the
getTransactionSynchronizationRegistry method (shown below) of BootstrapContext (see
ResourceAdapter JavaBean and Bootstrapping a Resource Adapter Instance). The application server is
required to make a TransactionSynchronizationRegistry object available through its BootstrapContext
implementation. The same TransactionSynchronizationRegistry object can be used by any number of
artifacts in the resource adapter module with thread safety.

public interface
jakarta.resource.spi.BootstrapContext {

TransactionSynchronizationRegistry getTransactionSynchronizationRegistry();

8.15. Requirements

This section outlines the requirements for the transaction management contract.

8.15.1. Resource Adapter
A resource adapter can be classified based on the level of transaction support, as follows:

* NoTransaction . The resource adapter supports neither resource manager local nor Jakarta
Transactions transactions. It implements neither the XAResource nor LocalTransaction interfaces.

* LocalTransaction - The resource adapter supports resource manager local transactions by
implementing the LocalTransaction interface. The local transaction management contract is
specified in Local Transaction Management Contract.

* XATransaction - The resource adapter supports both resource manager local and Jakarta
Transactions transactions by implementing the LocalTransaction and XAResource interfaces. The
requirements for supporting the XAResource -based contract are specified in XAResource-based
Transaction Contract.

Jakarta Connectors 113

8.15. Requirements

ﬁ Other levels of support (includes any transaction optimizations supported by an
underlying resource manager) are outside the scope of Jakarta Connectors.

The above levels reflect the major steps of transaction support that a resource adapter is required to
allow external transaction coordination. Depending on its transactional capabilities and the
requirements of its underlying EIS, a resource adapter can choose to support any one of the above
transaction support levels.

8.15.1.1. Auto Commit

When a connection is in an auto-commit mode, an operation on the connection automatically commits
after it has been executed. The auto-commit mode must be off if multiple interactions have to be
grouped in a single transaction, either local or XA, and committed or rolled back as a unit.

A resource adapter must manage the auto-commit mode as follows:

A transactional resource adapter, either at XATransaction or LocalTransaction level, must set the auto-
commit mode to false within a transaction, either local or XA, on a connection participating in the
transaction. This requirement holds for both container-managed and bean-managed transaction
demarcation.

A transactional resource adapter must set the auto-commit mode to true, on connections that are used
outside a transaction.

8.15.2. Application Server

An application server must support resource adapters with all three levels of transaction support—
NoTransaction , LocalTransaction , and XATransaction .

The following are the requirements for an application server for the transaction management contract:

* The application server must support a transaction manager that manages transactions using the
Jakarta Transaction XAResource -based contract. The requirements for a transaction manager to
support an XAResource -based contract are specified in Transaction Manager Requirements.

* The application server must use the LocalTransaction interface-based contract to manage local
transactions for a resource manager.

* The application server must use the deployment descriptor mechanism and the values in the
Connector metadata annotation to ascertain the transactional capabilities of a resource adapter.
Refer to Deployment for details on the deployment descriptor specification and @Connector for
details on the Connector annotation.

 If a ManagedConnectionFactory chooses to specify its transactional capability in a dynamic fashion
at runtime (see Runtime Transaction Support Level Specification), the application server must
ascertain the transactional capability provided by the ManagedConnectionFactory instance.

* The application server must implement the ConnectionEventListener interface to get transaction-

114 Jakarta Connectors

8.16. Connection Optimizations

related event notifications.

8.16. Connection Optimizations

This section describes two optional connection optimizations:

* Lazy connection association optimization

* Lazy transaction enlistment optimization

8.16.1. Lazy Connection Association Optimization

Application components may acquire connections through a ConnectionFactory object (resource-ref)
obtained from the JNDI namespace. The connection(s) thus obtained may be closed by the application
before method completion, or may be cached by the application for later use.

When a connection is cached by the application component, the cached connection handle is
considered active and remains associated with a ManagedConnection instance from the application
server’s connection pool. If the cached connection handle is used infrequently, then the associated
ManagedConnection instance remains in hibernation during periods of non-use. This is because the
application server cannot detect when the hibernating ManagedConnection instance will be used again
by the application.

Such hibernating ManagedConnection instances result in suboptimal usage of system resources.
Avoiding hibernation of ManagedConnection instances leads to more optimal resource utilization and
better performance.

The following describes a mechanism that allows an application server to avoid hibernating
ManagedConnection instances (by dissociating the ManagedConnection from its connection handles
and using the freed ManagedConnection instance for other applications). This mechanism also
provides a way to notify the application server when a dissociated connection handle is used by the
application, so that it can be associated with an appropriate ManagedConnection instance.

Connection Acquisition Processing describes the processing of a getConnection method call initiated by
an application component (that is, when the application component first acquires a connection). At a
later point in time, the connection may be dissociated by the application server by calling the
dissociateConnections method on the appropriate ManagedConnection instance. This dissociates the
ManagedConnection instance from all its connection handle objects.

When such a dissociated connection is used by the application (upon method re-entry), it is required to
be re-associated with an appropriate ManagedConnection instance. Connection Re-association
Processing describes connection re-association processing. The connection re-association processing
depends on the connection notifying the application server upon re-use (lazy re-association trigger).
The connection object invokes the associateConnection method on the ConnectionManager instance in
order to lazily re-associate itself with an appropriate ManagedConnection instance.

Thus, a connection handle that can be dissociated can exist in one of three states: Active, Inactive or

Jakarta Connectors 115

8.16. Connection Optimizations

Closed. State Diagram of a Dissociatable Application-level Connection Handle describes the state
transitions of a dissociatable connection handle. Note that the state Inactive applies only to
dissociatable connection handles.

The application server may dissociate connections that are shareable. It must not dissociate
connections that are marked unshareable, however, since application-specific state may be retained by
a ManagedConnection instance. The application server may also call the dissociateConnections method
even when an active transaction is in progress in the ManagedConnection .

When a disassociated connection handle is closed, the resource adapter must notify the application
server by calling the inactiveConnectionClosed method on the LazyAssociatableConnectionManager
interface. The application server can then perform any cleanup operations related to the disassociated
connection handle in its connection pool.

Connection Acquisition Processing

4. getConnection(
Subject, ConnectionRequestInfo)

ConnectionManager) ManagedConnection

7

3. createManagedConnection(Subject, ConnectionRequestInfo)
OR matchManagedConnections(ConnectionSet, Subject,
ConnectionRequestInfo)

2. allocateConnection(
ManagedConnectionFactory,
ConnectionRequestInfo)

ConnectionFactory

N

1. getConnection(config)

AppComponent ManagedConnectionFactory

Connection Re-association Processing

4. associateConnection(Connection)

ConnectionManager) ManagedConnection

N

3. createManagedConnection(Subject, ConnectionRequestInfo)
OR matchManagedConnections(ConnectionSet, Subject,
2. associateConnection(ConnectionRequestInfo)
Connection,
ManagedConnectionFactory,
ConnectionRequestInfo)

Connection

A
7

1. execute operation

AppComponent ManagedConnectionFactory

State Diagram of a Dissociatable Application-level Connection Handle

116 Jakarta Connectors

8.16. Connection Optimizations

Lo ==«_ ManagedConnection.

’ N associateConnection
N)
.]]
ManagedConnection. . v ManagedConnection.
getConnection s dissociateConnections .
\ Active N Inactive
7 valid associated with a , [4 valid but not associated with a

ManagedConnection ManagedConnection

N .
ManagedConnection.
associateConnection

Connection.close
ManagedConnection.cleanup

Closed
invalid and not associated with a
ManagedConnection

8.16.1.1. API Additions

package jakarta.resource.spi;

import jakarta.resource.ResourceException;

interface LazyAssociatableConnectionManager {
// application server

void associateConnection(Object connection,
ManagedConnectionFactory mcf,
ConnectionRequestInfo info)
throws ResourceException;

void inactiveConnectionClosed(Object connection, ManagedConnectionFactory mecf);

interface DissociatableManagedConnection {
// resource adapter

void dissociateConnections() throws ResourceException;

Neither the application server nor the resource adapter must support this optimization.

A resource adapter that does not support this optimization must provide a ManagedConnection
implementation that does not implement the DissociatableManagedConnection interface. This allows
an application server to detect that the resource adapter does not support this optimization.

Jakarta Connectors 117

8.16. Connection Optimizations

An application server that does not support this optimization must provide a ConnectionManager
implementation that does not implement the LazyAssociatableConnectionManager interface. This
allows a resource adapter to detect that the application server does not support this optimization. In
reality, a resource adapter will not call this method (in order to re-associate a connection) since an
application server that does not support this optimization would never dissociate a connection.

There are no changes to the resource adapter deployment descriptor since the application server can
programmatically detect whether a resource adapter supports this optimization or not.

8.16.2. Lazy Transaction Enlistment Optimization

Transactions may be started by an application server before a method call on an application
component or it may be started by an application component during a method call. It is also possible
that an application server may use a transaction imported from a different server during a method
call.

Irrespective of how a transaction is started, an application server enlists all connections (cached or
newly acquired by an application component) with the transaction, so that the work done using those
connections will be part of the transaction. This enlistment happens before the method call in the case
of cached connections and during the method call when connections are newly acquired within the
transaction.

But not all the connections that are cached or newly acquired by an application component may be
used within a transaction. Since the application server cannot detect whether these connections would
be used within the transaction, it statically (eagerly) enlists all such connections with the transaction.
Thus, connections that are not used in a transaction are unnecessarily enlisted, which leads to sub-
optimal performance.

The following describes a dynamic mechanism that allows the application server to enlist only those
connections that are used within a transaction. A ManagedConnection that supports this optimization
must invoke the lazyEnlist method on the ConnectionManager every time it is used outside of a local or
XA transaction. The application server uses this method call to lazily enlist the connection in the
transaction (if there is one). The application server may delist the ManagedConnection instances from
the transaction at a later point.

This optimization can be used only on connections that are lazily enlist-able.

8.16.3. API Additions

118 Jakarta Connectors

8.16. Connection Optimizations

package jakarta.resource.spi;

import jakarta.resource.ResourceException;
import javax.transaction.xa.Xid;

interface LazyEnlistableConnectionManager {
// application server

void lazyEnlist(ManagedConnection) throws ResourceException;

interface LazyEnlistableManagedConnection {
// resource adapter

}

Neither the application server nor the resource adapter must support this optimization.

A resource adapter that does not support this optimization must provide a ManagedConnection
implementation which does not implement the LazyEnlistableManagedConnection interface. This
allows an application server to detect that the resource adapter does not support this optimization.

An application server that does not support this optimization must provide a ConnectionManager
implementation that does not implement the LazyEnlistableConnectionManager interface. This allows
a resource adapter to detect that the application server does not support this optimization.

There are no changes to the resource adapter deployment descriptor since the application server can
programmatically detect whether a resource adapter supports this optimization or not.

Jakarta Connectors 119

9.1. Overview

Chapter 9. Security Architecture

This chapter specifies the security architecture for the integration of EISs with the Jakarta EE platform.
It adds EIS integration-specific security details to the security requirements specified in other Jakarta
EE specifications.

9.1. Overview

It is critical that an enterprise be able to depend on the information in its EIS for its business activities.
Any loss or inaccuracy of information or any unauthorized access to the EIS can be extremely costly to
an enterprise. There are several mechanisms that can be used to protect an EIS against such security
threats, including:

* Identification and authentication of principals, human users to verify they are who they claim to
be.

* Authorization and access control to determine whether a principal is allowed to access an
application server and/or an EIS.

* Secure communication between an application server and an EIS. Communication over insecure
links can be protected using a protocol, for example, Kerberos, that provides authentication,
integrity, and confidentiality services. Communication can also be protected by using a secure link
protocol, for example, SSL.

9.2. Goals

The security architecture is designed to meet the following goals:
* Extend the end-to-end security model for Jakarta EE applications to include integration with EISs
based on Jakarta Connectors.
» Support authentication and authorization of users who are accessing EISs.

* Keep the security architecture technology neutral and enable the specified security contract to be
supported by various security technologies.

* Enable the security architecture to support a range of EISs with different levels of security support
and existing security environments.

» Support security configuration of a resource adapter in an operational environment.

* Keep the security model for Jakarta Connector-based EIS integration transparent to an application
component provider. This includes providing support for single sign-on across multiple EISs.

The security model for EIS integration is not designed to do the following:

120 Jakarta Connectors

9.3. Terminology

* Mandate a specific technology and describe how it can be used to implement the security
architecture for Jakarta Connector-based EIS integration.

» Specify and mandate a specific security policy. The security architecture enables an application
server and EIS to support the implementation and administration of security policies based on
their respective requirements.

9.3. Terminology
The following terms are used in this chapter:

* Principal . A principal is an entity that can be authenticated by an authentication mechanism
deployed in an enterprise. A principal is identified using a principal name and authenticated using
authentication data. The content and format of the principal name and the authentication data
depend upon the authentication mechanism.

* Security Attributes. A principal has a set of security attributes associated with it. These security
attributes are related to the authentication and authorization mechanisms. Some examples are
security permissions, and credentials for a principal.

* Credential. A credential contains or references security information that can authenticate a
principal to additional services. A principal acquires a credential upon authentication or from
another principal that allows its credential to be used. The latter is termed principal delegation.

* End user. An end user is an entity, human or service, that acts as a source of a request to an
application. An end user is represented as a security principal within a Subject as specified in the
JAAS framework (see Java Authentication and Authorization Service Specification, version 1.0).

+ Initiating Principal. The security principal representing the end-user that interacts directly with
the application. An end-user can authenticate using either a web client or an application client.

» Caller Principal. A principal that is associated with an application component instance during a
method invocation. For example, a Jakarta Enterprise Beans instance can call the getCallerPrincipal
method to get the principal associated with the current security context.

* Resource Principal. A security principal under whose security context a connection to an EIS
instance is established.

* Security domain. A scope within which certain common security mechanisms and policies are
established. This specification does not specify the scope of a security domain. An enterprise can
contain more than one security domain. Thus an application server and an EIS may either be in the
same or different security domains. Security Scenarios provides illustrative examples of how
security domains can be setup and managed.

In a managed environment, application components are deployed in web or Jakarta Enterprise Beans
containers. When a method gets invoked on a component, the principal associated with the component
instance is termed a caller principal.

The relationship between an initiating principal and a caller principal depends on the principal
delegation option for inter-container and inter-component calls. This form of principal delegation is

Jakarta Connectors 121

9.4. Application Security Model

out of the scope of Jakarta Connectors.

The relationship of a resource principal and its security attributes, for example, credentials and access
privileges, to an initiating or caller principal depends on how the resource principal has been setup by
the system administrator or deployer.

Refer to Interfaces and Classes for details on interfaces and classes that are used to represent a
resource principal and its credentials.

9.4. Application Security Model

This section is a brief summary of the security model from the perspective of an application
component provider. Refer to the relevant specifications for more detail.

The application component requests a connection to be established under the security context of a
resource principal. The security context includes security attributes—access privileges, authorization
level—for a resource principal. Once a connection is successfully established, all application-level
invocations to the EIS instance using the connection happen under the security context of the resource
principal.

The application component provider has the following two choices related to EIS sign-on:

* Allow the deployer to set up the resource principal and EIS sign-on information. For example, the
deployer sets the user name and password for establishing a connection to an EIS instance.

* Perform sign-on to an EIS from the component code by providing explicit security information for
a resource principal.

The application component provider uses a deployment descriptor element or metadata annotations
defined in the corresponding application component specifications, for example, res-auth for Jakarta
Enterprise Beans components, to indicate the requirements for one of the above two approaches. If the
res-auth element is set to Application , the component code performs a programmatic sign-on to the
EIS. If the res-auth element is Container , the application server takes on the responsibility of setting up
and managing EIS sign-on.

9.4.1. Scenario: Container-Managed Sign-on

The application component provider sets the res-auth deployment descriptor element, or the
equivalent metadata annotation defined in the relevant application component specification, to be
Container letting the application server take the responsibility of managing EIS sign-on.

The Deployer sets up the principal mapping such that the user account for connecting to the EIS
instance is always eStoreUser . The Deployer also configures the authentication data, for example, the
password, needed to authenticate the eStoreUser to the EIS.

The component code invokes the getConnection method on the ConnectionFactory instance with no
security-related parameters. The component relies on the application server to manage sign-on to the

122 Jakarta Connectors

9.4. Application Security Model

EIS instance based on the security information configured by the Deployer.

// Method in an application component

Context initctx = new InitialContext();

// perform INDI lookup to obtain connection factory
jakarta.resource.cci.ConnectionFactory cxf =

(jakarta.resource.cci.ConnectionFactory)initctx.lookup(“java:comp/env/eis/MyEIS");

// Invoke factory to obtain a connection. The security
// information is not passed in the getConnection method

jakarta.resource.cci.Connection cx = cxf.getConnection();

9.4.2. Scenario: Component-Managed Sign-on
The application component provider sets the res-auth element to be Application.

The component code performs a programmatic sign-on to the EIS. The application component passes
explicit security information, for example, the username and password, to the getConnection method
of the ConnectionFactory instance.

// Method in an application component

Context initctx = new InitialContext();

// perform INDI lookup to obtain connectionfactory

jakarta.resource.cci.ConnectionFactory cxf =
(jakarta.resource.cci.ConnectionFactory)initctx.lookup(“java:comp/env/eis/MyEIS");

// Invoke factory to obtain a connection

com.myeis.ConnectionSpecImpl properties = ..

// get a new ConnectionSpec

properties.setUserName(”..."”);

properties.setPassword(“...”);

jakarta.resource.cci.Connection cx = cxf.getConnection(properties);

Jakarta Connectors 123

9.5. EIS Sign-on

9.5. EIS Sign-on

Creating a new physical connection requires a sign-on to an EIS instance. Changing the security context
on an existing physical connection can also require EIS sign-on. The latter is termed re-authentication.

An EIS sign-on typically involves one or more of the following steps:

* Determine a resource principal under whose security context a physical connection to an EIS will
be established.

» Authenticate a resource principal if it is not already authenticated.

» Establish a secure association between the application server and the EIS. This enables additional
security mechanisms, for example, data confidentiality and integrity, to be applied to
communication between the two entities.

» Set the access control to EIS resources.

9.5.1. Authentication Mechanism

An application server and an EIS collaborate to ensure resource principals are properly authenticated
when the principal connects to the underlying EIS. Jakarta Connectors identifies the following as the
commonly-supported authentication mechanisms:

* BasicPassword - Basic password based authentication mechanism specific to an EIS

e Kerbv5 - Kerberos version 5-based authentication mechanism

The authentication-mechanism-type element is used in the deployment descriptor to specify whether or
not a resource adapter supports a specific authentication mechanism. Refer to Requirements for more
details on the specification of the deployment descriptor for a resource adapter. The authentication
mechanism supported by the resource adapter may also specified through the
AuthenticationMechanism annotation (see @AuthenticationMechanism) as part of the Connector
metadata annotation (see @Connector).

Jakarta Connectors does not require that a specific authentication mechanism be supported by an
application server and an EIS. An application server may support any other authentication
mechanisms for EIS sign-on. The connector security architecture is independent of security
mechanisms.

9.5.2. Resource Principal

When an application component requests a connection from a resource adapter, the connection
request is made under the security context of a resource principal. The Deployer can set a resource
principal based on the following options:

* Configured Identity. In this case, a resource principal has its own configured identity and security
attributes independent of the identity of the initiating or caller principal. The identity of the

124 Jakarta Connectors

9.5. EIS Sign-on

resource principal can be configured either at deployment time or specified dynamically by a
component at the connection creation. The scenario described in eStore Application illustrates an
example where connections to an EIS are always established under the security context of a valid
EIS user account. This happens independent of the initiating or caller principal. For example, if a
caller principal is A, then the configured resource principals can be B and C on two different EIS
instances, where A, B, and C are independent identities.

* Principal Mapping. A resource principal is determined by mapping from the identity and/or
security attributes of the initiating or caller principal. In this case, a resource principal does not
inherit identity or security attributes of a principal that it has been mapped from. The resource
principal gets its identity and security attributes based on the mapping. For example, if the caller
principal has identity A, then the mapped resource principal is mapping(A,EIS1) and mapping(A,
EIS2) on two different EIS instances.

* Caller Impersonation. A resource principal acts on behalf of an initiating or caller principal.
Acting on behalf of a caller principal requires that the caller’s identity and credentials be delegated
to the EIS. The mechanism by which this is accomplished is specific to a security mechanism and an
application server implementation. An example of the impersonation is described in Employee
Self-Service Application.

In some scenarios, a caller principal can be a delegate of an initiating principal. In this case, a resource
principal transitively impersonates an initiating principal.

The support for principal delegation is typically specific to a security mechanism. For example,
Kerberos supports a mechanism for the delegation of authentication. Refer to the Kerberos v5
specification for more details. The security technology specific details are out of the scope of Jakarta
Connectors.

* Credentials Mapping. This mechanism may be used when an application server and EIS support
different authentication domains. For example, the initiating principal has been authenticated and
has public key certificate-based credentials. The security environment for the EIS is configured
with the Kerberos authentication service. The application server is configured to map the public
key certificate-based credentials associated with the initiating principal to the Kerberos credentials.
In this case, the resource principal is the same as the caller principal with the mapped credentials.

In the case of credential mapping, the mapped resource principal has the same identity as the
initiating or caller principal. For example, a principal with identity A has initial credentials
cred(A,mech1) and has credentials cred(A,mech2) after mapping. mechl and mech2 represents different
mechanism types.

9.5.3. Authorization Model

Authorization checking to ensure that a principal has access to an EIS resource can be applied at one
or more of the following:

* At the EIS

* At the application server

Jakarta Connectors 125

9.5. EIS Sign-on

Authorization checking at the target EIS can be done in an EIS-specific way and is not specified here.
For example, an EIS can define its access control policy in terms of its specific security roles and
permissions.

Authorization checking can also be done at the application server level. For example, an application
server can allow a principal to create a connection to an EIS only if the principal is authorized to do so.
Jakarta EE containers such as Jakarta Enterprise Beans and servlet containers support both
programmatic and declarative security that can be used to define authorization policies. Programmatic
and declarative security are defined in the individual specifications. Refer to the Jakarta Enterprise
Beans and servlet specifications for more details. An application component developer developing
components for EIS access must follow the requirements defined in these specifications.

9.5.4. Secure Association

The communication between an application server and an EIS can be subject to security threats such
as data modification and loss of data. Establishing a secure association counters such threats. A secure
association is shared security information that allows a component on the application server to
communicate securely with an EIS.

Establishing a secure association includes several steps:

» The resource principal is authenticated to the EIS. This may require that the target principal in the
EIS domain authenticate itself back to the application server. A target principal can be set up by the
system administrator as a security principal associated with a running EIS instance or specific EIS
resource.

* Negotiate quality of protection such as confidentiality and integrity.

* A pair of communicating entities—an application server and an EIS instance—establish a shared
security context using the credentials of the resource principal. The security context encapsulates
shared state information, required so that communication between the application server and the
EIS can be protected through integrity and confidentiality mechanisms. Examples of shared state
information are cryptographic keys and message sequence numbers.

A secure association between an application server and an EIS is always established by the resource
adapter implementation. Note that a resource adapter library runs within the address space of the
application server.

A resource adapter can use any security mechanism to establish the secure association. GSS-API (refer
to IETF draft on GSS-API v2[5]) is an example of such a mechanism. Note that Jakarta Connectors does
not require use of the GSS-API by a resource adapter or application server.

Configuring a mechanism for establishing secure associations is outside the scope of Jakarta
Connectors. This includes setting up the desired quality of protection during secure communication.

Once a secure association is successfully established, the connection is associated with the security
context of the resource principal. Subsequently, all application-level invocations to the EIS instance

126 Jakarta Connectors

9.6. Roles and Responsibilities

using the connection happen under the security context of the resource principal.

9.6. Roles and Responsibilities

This section describes various roles involved in the security architecture. It also describes
responsibilities of each role from the security perspective.

The roles and responsibilities of the Application Component Provider and Deployer are specified in
detail in the respective Jakarta EE component model specifications.

9.6.1. Application Component Provider

The following features are common across different Jakarta EE component models from the
perspective of an Application Component Provider:

* An Application Component Provider invariably avoids the burden of securing its application and
focuses on developing the business functionality of its application.

* A security-aware Application Component Provider can use a simple programmatic interface to
manage security at an application level. The programmatic interface enables the Application
Component Provider to program access control decisions based on the security context—the
principal and role—associated with the caller of a method and to manage programmatic sign-on to
an EIS.

* An Application Component Provider specifies security requirements for its application
declaratively through metadata annotation and deployment descriptor. The security requirements
include security roles, method permissions, and an authentication approach for EIS sign-on.

* More qualified roles - Application Server Vendor, Deployer, System Administrator - have the
responsibility of satisfying overall security requirements through the deployment mechanism for
resource adapters and components, and managing the security environment.

9.6.2. Deployer

The Deployer specifies security policies that ensure secure access to the underlying EISs from
application components. The deployer adapts the intended security view of an application for EIS
access, specified through metadata annotations described in Metadata Annotations or the deployment
descriptor, to the actual security mechanisms and policies used by the application server and EISs in
the target operational environment. The Deployer uses tools to accomplish the above task.

The output of the Deployer’s work is a security policy descriptor specific to the operational
environment. The format of the security policy descriptor is specific to an application server.

The Deployer performs the following deployment tasks for each connection factory reference declared
in the deployment descriptor of an application component:

* Provides a connection factory specific security configuration that is needed for opening and

Jakarta Connectors 127

9.6. Roles and Responsibilities

managing connections to an EIS instance.

* Binds the connection factory reference in the deployment descriptor of an application component
to the JNDI registered reference for the connection factory. Refer to JNDI Configuration and Lookup
for the JNDI configuration of a connection factory during deployment of a resource adapter. The
deployer can use the JNDI LinkRef mechanism to create a symbolic link to the actual JNDI name of
the connection factory.

* Configures the security information for EIS sign-on, if the value of the res-auth deployment
descriptor element is Container . For example, the Deployer sets up the principal mapping for EIS
sign-on.

9.6.3. Application Server

The application server provides a security environment with specific security policies and mechanisms
that support the security requirements of the deployed application components and resource adapters,
thereby ensuring a secure access to the connected EISs.

The typical responsibilities of an application server are as follows:

* Provide tools to set up security information for a resource principal and EIS sign-on when res-auth
element is set to Container . This includes support for principal delegation and mapping for
configuring a resource principal.

* Provide tools to support management and administration of its security domain. For example,
security domain administration can include setting up and maintaining both underlying
authentication services and trusts between domains, plus managing principals, including identities,
keys, and attributes. Such administration is typically security technology specific and is outside the
scope of the Jakarta Connector Architecture.

* Support a single sign-on mechanism that spans the application server and multiple EISs. The
security mechanisms and policies through which single sign-on is achieved are outside the scope of
the Jakarta Connector Architecture.

JAAS Based Security Architecture specifies how JAAS can be used by an application server to support
the requirements of the connector security architecture.

9.6.4. EIS Vendor

EIS provides a security infrastructure and environment that supports the security requirements of the
client applications. An EIS can have its own security domain with a specific set of security policies and
mechanisms, or it can be set up as part of an enterprise-wide security domain.

9.6.5. Resource Adapter Provider

The resource adapter provider provides a resource adapter that supports the security requirements of
the underlying EIS.

128 Jakarta Connectors

9.6. Roles and Responsibilities

The resource adapter implements the security contract specified as part of the Jakarta Connector
Architecture. Security Contract specifies the security contract and related requirements for a resource
adapter.

The resource adapter specifies its security capabilities and requirements through metadata
annotations or its deployment descriptor. Requirements specifies a standard deployment descriptor
for a resource adapter. Metadata Annotations specifies the metadata annotations used to express
security requirements of a resource adapter.

9.6.6. System Administrator

The system administrator typically works in close association with administrators of multiple EISs that
have been deployed in an operational environment. The system administration tasks can also be
performed by the Deployer.

The following tasks are illustrative examples of the responsibilities of the system administrator:
* Set up an operational environment based on the technology and requirements of the

authentication service, and if an enterprise directory is supported.

* Configure the user account information for both the application server and the EIS in the
enterprise directory. The user account information from the enterprise directory can then be used
for authentication of users requesting connectivity to the EIS.

* Establish a password synchronization mechanism between the application server and the EIS. This
ensures that the user’s security information is identical on both the application server and the EIS.
When an EIS requires authentication, the application server passes the user’s password to the EIS.

Jakarta Connectors 129

10.1. Security Contract

Chapter 10. Security Contract

This chapter specifies the security contract between the application server and the EIS. It also specifies
the responsibilities of the Resource Adapter Provider and the Application Server Vendor for supporting
the security contract.

This chapter references the following chapters and documents:

The security model specified in the Jakarta EE platform specification (see Jakarta Platform, Enterprise
Edition (Jakarta EE) Specification, version 10).

Security architecture specified in Security Architecture.

Security scenarios based on the Jakarta Connector Architecture (Refer to Security Scenarios).

10.1. Security Contract

The security contract between the application server and the resource adapter extends the connection
management contract (described in Connection Management) by adding security-specific details.

This security contract supports EIS sign-on by:

* Passing the connection request from the resource adapter to the application server, enabling the
application server to hook-in security services.

* Propagation of the security context, that is, JAAS Subject with principal and credentials, from the
application server to the resource adapter.

10.1.1. Interfaces and Classes

The security contract includes the following classes and interfaces:

10.1.2. Subject

The following text has been taken from the JAAS specification. For detailed information, refer to the
JAAS specification (see Java Authentication and Authorization Service Specification, version 1.0).

A Subject represents a grouping of related information for a single entity, such as a person. Such
information includes the Subject’s identities and its security-related attributes, for example, passwords
and cryptographic keys. A Subject can have multiple identities. Each identity is represented as a
Principal within the Subject . A Principal simply binds a name to a Subject .

A Subject can also own security-related attributes, which are referred to as Credentials . Sensitive
credentials that require special protection, such as private cryptographic keys, are stored within a
private credential set.

The Credentials intended to be shared, such as public key certificates or Kerberos server tickets, are

130 Jakarta Connectors

10.1. Security Contract

stored within a public credential set. Different permissions are required to access and modify different
credential sets.

The getPrincipals method retrieves all the principals associated with a Subject . The methods
getPublicCredentials and getPrivateCredentials respectively retrieve all the public or private credentials
belonging to a Subject . The methods defined in the Set class modify the returned set of principals and
credentials.

10.1.3. Resource Principal

The interface java.security.Principal represents a resource principal. The following code extract shows
the Principal interface:

public interface java.security.Principal {
public boolean equals(Object another);
public String getName();

public String toString();

public int hashCode();

The method getName returns the name of a resource principal.

An application server should use the Principal interface, or any derived interface, to pass a resource
principal as part of a Subject to a resource adapter.

10.1.4. GenericCredential

This interface, introduced in Version 1.0 of this specification, has been deprecated.

0 The preferred way to represent generic credential information is by way of the
org.ietf.jgss.GSSCredential interface in J2SE Version 1.4, which provides similar
functionality.

The interface jakarta.resource.spi.security.GenericCredential defines a security mechanism-
independent interface for accessing the security credential of a resource principal.

The GenericCredential interface provides a Java wrapper around an underlying mechanism-specific
representation of a security credential. For example, the GenericCredential interface can be used to
wrap Kerberos credentials.

The Jakarta Connector Architecture does not define any standard format and requirements for

Jakarta Connectors 131

10.1. Security Contract

security mechanism specific credentials. For example, a security credential wrapped by a Generic
Credential interface can have a native representation specific to an operating system.

A contract for the representation of mechanism-specific credentials must be
established between an application server and a resource adapter and is outside the

0 scope of the Jakarta Connector Architecture. This includes requirements for the
exchange of mechanism-specific credentials between a JAAS module and GSS
provider. Refer to JAAS Based Security Architecture for details on JAAS-based security
architecture.

The GenericCredential interface enables a resource adapter to extract information about a security
credential. The resource adapter can then manage an EIS sign-on for a resource principal by any of the
following:

* Using the credentials in an EIS specific manner if the underlying EIS supports the security
mechanism type represented by the GenericCredential instance

» Using GSS-AP I (see RFC: Generic Security Service API (GSS-API) Specification, version 2) if the
resource adapter and underlying EIS instance support GSS-API.

10.1.4.1. Interface

The following code extract shows the GenericCredential interface:

public interface jakarta.resource.spi.security.GenericCredential {

public String getName();

public String getMechType();

public byte[] getCredentialData() throws jakarta.resource.spi.SecurityException;
public boolean equals(Object another);

public int hashCode();

The GenericCredential interface supports a set of getter methods to obtain information about a security
credential.

The method getName returns the name of the resource principal associated with a GenericCredential
instance.

The method getMechType returns the mechanism type for the GenericCredential instance. The
mechanism type definition for GenericCredential must be consistent with the Object Identifier (OID)

132 Jakarta Connectors

10.1. Security Contract

based representation specified in the GSS specification (see RFC: Generic Security Service API (GSS-API)
Specification, version 2). In the GenericCredential interface, the mechanism type is returned as a
stringified representation of the OID specification.

The GenericCredential interface can be used to get security data for a specific security mechanism. An
example is authentication data required for establishing a secure association with an EIS instance on
behalf of the associated resource principal. The getCredentialData method returns the credential
representation as an array of bytes. Note that the Jakarta Connector Architecture does not define a
standard format for the returned credential data.

10.1.4.2. Implementation

If an application server supports the deployment of a resource adapter which supports
GenericCredential as part of the security contract, the application server must provide an
implementation of the GenericCredential interface. Refer to the deployment descriptor specification in
Requirements for details on how a resource adapter specifies its support for GenericCredential . Refer
to @AuthenticationMechanism for details on how a resource adapter may use the
AuthenticationMechanism annotation to specify its support for GenericCredential.

10.1.5. GSSCredential

This interface org.ietf.jgss.GSSCredential is in J2SE Version 1.4. This provides a mechanism to represent
generic credential information. The functionality provided by this interface is similar to the
deprecated GenericCredential interface.

10.1.5.1. Implementation

If an application server supports the deployment of a resource adapter which supports GSSCredential
as part of the security contract, the application server must provide an implementation of the
GSSCredential interface. Refer to the deployment descriptor specification in Requirements for details
on how a resource adapter specifies its support for GSSCredential. Refer to Section 18.4.3
“@AuthenticationMechanism” for details on how a resource adapter may use the
AuthenticationMechanism annotation to specify its support for GSSCredential.

10.1.6. PasswordCredential

The class jakarta.resource.spi.security.PasswordCredential acts as a holder of username and password
information. This class enables an application server to pass the username and password to the
resource adapter through the security contract.

The method getUserName gets the name of the resource principal. The interface java.security.Principal
represents a resource principal.

The PasswordCredential class must implement the equals and hashCode methods.

Jakarta Connectors 133

10.1. Security Contract
public final class jakarta.resource.spi.security.PasswordCredential
implements java.io.Serializable {
public PasswordCredential(String userName, char[] password) { ... }
public String getUserName() { ... }
public char[] getPassword() { ... }
public ManagedConnectionFactory getManagedConnectionFactory() { ... }
public void setManagedConnectionFactory(ManagedConnectionFactory mef) { ... }
public boolean equals(Object other) { ... }

public int hashCode() { ... }

The getManagedConnectionFactory method returns the ManagedConnectionFactory instance for which
the wuser name and password has been set by the application server. Refer to
ManagedConnectionFactory to see how a resource adapter uses this method.

10.1.7. ConnectionManager

The method allocateConnection is called by the resource adapter’s connection factory instance. This
method lets the resource adapter pass a connection request to the application server, so the
application server can hook-in security and other services.

public interface jakarta.resource.spi.ConnectionManager
extends java.io.Serializable {

public Object allocateConnection(ManagedConnectionFactory mcf,
ConnectionRequestInfo cxRequestInfo)
throws ResourceException;

Security Contract

134 Jakarta Connectors

10.1. Security Contract

----- Architected Contract

Application Component
==]mplementation Specific

Application Server

Resource Adapter

AV

ConnectionManager ConnectionFactory

ManagedConnectionFactory

Security Service
Manager

Enterprise Information System (EIS)

Depending on whether the application server or application component is configured to be responsible
for managing EIS sign-on (refer to Application Component Provider), the resource adapter calls the
ConnectionManager . allocateConnection method in one of the following ways:

* Container-managed Sign-on. The application component passes no security information in the
getConnection method and the application server is configured to manage EIS sign-on.

The application server provides the required security information for the resource principal through
its configured security policies and mechanisms, for example, principal mapping. The application
server requests the authentication of the resource principal to the EIS either itself or passes
authentication responsibility to the resource adapter. This aspect is explained later in the specification
of the ManagedConnectionFactory interface.

* Component-managed Sign-on. In this case, the application component provides explicit security
information in the getConnection method. The resource adapter invokes the allocateConnection
method by passing security information in the ConnectionRequestinfo parameter. Since the security
information in the ConnectionRequestinfo is opaque to the application server, the application
server should rely on the resource adapter to manage EIS sign-on, as explained in the
ManagedConnectionFactory interface specification under option C.

10.1.8. ManagedConnectionFactory

The following code extract shows the methods of the ManagedConnectionFactory interface that are

Jakarta Connectors 135

10.1. Security Contract

relevant to the security contract:

public interface jakarta.resource.spi.ManagedConnectionFactory
extends java.io.Serializable {

public ManagedConnection createManagedConnection(
javax.security.auth.Subject subject,
ConnectionRequestInfo cxRequestInfo)

During the JNDI lookup, the ManagedConnectionFactory instance is configured by the application
server with a set of configuration properties. These properties include default security information
and EIS instance-specific information, such as hostname and port number, required for initiating a
sign-on to the underlying EIS during the creation of a new physical connection.

The default security configuration on a ManagedConnectionFactory can be overridden by security
information provided either by a component, in component managed sign-on, or by the container, in
container-managed sign-on.

The createManagedConnection method is used by the application server when it requests the resource
adapter to create a new physical connection to the underlying EIS.

10.1.8.1. Contract for the Application Server

The application server may provide specific security services, such as principal mapping and
delegation, and single sign-on, before using the security contract with the resource adapter. For
example, the application server can map the caller principal to a resource principal before calling the
createManagedConnection method to create a new connection under the security context of the
resource principal.

In container-managed sign-on, the application server is responsible for creating a Subject instance
using its implementation-specific security mechanisms and configuration. This should happen before
the application server calls the createManagedConnection method of the ManagedConnectionFactory .
The resource adapter is driven by the application server and acts as consumer of security information
in the created Subject .

If the application server maintains a cache of the security credentials, such as Kerberos ticket granting
ticket (TGT), the application server should reuse the credentials as part of the newly created Subject
instance. For example, the application server uses the Subject.getPrivateCredentials().add(credential)
method to add a credential to the private credential set.

Security Contract: Subject Interface and its Containment Hierarchy

136 Jakarta Connectors

10.1. Security Contract

<class>
javax.security.auth.Subject

-

contains contains

<class> contains <interface>

PasswordCredential java.security.Principal

0-n
<interface>
GSSCredential

The preceding figure shows the relationship between the Subject , Principal , PasswordCredential and
GSSCredential interfaces. Note that in the following options A and B defined for
createManagedConnection method invocation, the Subject instance contains a single resource principal,
represented as java.security.Principal , and multiple credentials.

The application server has the following options for invoking the createManagedConnection method :

* Option A. The application server invokes the createManagedConnection method by passing in a
non-null Subject instance that carries a single resource principal and its corresponding password-
based credentials, represented by the class PasswordCredential that provides the user name and
password. The PasswordCredential should be set in the Subject instance as part of the private
credential set. Note that the passed Subject can contain multiple PasswordCredential instances.

The resource adapter extracts the username and password from this Subject instance by looking for
the PasswordCredential instance in the Subject , and uses this security information to sign-on to the EIS
instance during connection creation.

* Option B. The application server invokes the createManagedConnection method by passing in a
non-null Subject instance that carries a single resource principal and its security credentials. In this
option, credentials are represented through the GSSCredential interface. A typical example is a
Subject instance with Kerberos credentials.

For example, an application server may use this option for createManagedConnection method
invocation when the resource principal is impersonating the caller or initiating principal, and has
valid credentials acquired through impersonation. An application server may also use this option for
principal mapping scenarios with credentials of a resource principal represented through the
GSSCredential interface.

Note that sensitive credentials requiring special protection, such as private cryptographic keys, are
stored within a private credential set, while credentials intended to be shared, such as public key
certificates or Kerberos server tickets, are stored within a public credential set. The two methods
getPrivateCredentials and getPublicCredentials should be used accordingly.

In the case of Kerberos mechanism type, the application server must pass the principal’s ticket

Jakarta Connectors 137

10.1. Security Contract

granting ticket (TGT) to a resource adapter in a private credential set.

The resource adapter uses the resource principal and its credentials from the Subject instance to go
through the EIS sign-on process before creating a new connection to the EIS.

* Option C. The application server invokes the createManagedConnection method by passing a null
Subject instance. The application server must use this option for the component-managed sign-on
case. In this option, security information is carried in the ConnectionRequestinfo instance. The
application server does not provide any security information that can be used by the resource
adapter for managing EIS sign-on.

During the deployment of a resource adapter, the application server must be configured to use one of
the above specified invocation options. Refer to Packaging Requirements for more details.

10.1.8.2. Contract for Resource Adapter

A resource adapter can do EIS sign-on and connection creation in an implementation-specific way, or it
can use the GSS-API. The latter option is specified in JAAS Based Security Architecture. A resource
adapter has the following options, corresponding to the options for an application server, for handling
the invocation of the createManagedConnection method:

* Option A. The resource adapter explicitly checks whether the passed Subject instance carries a
PasswordCredential instance using the Subject.getPrivateCredentials method.

Note that the security contract assumes that a resource adapter has the necessary security permissions
to extract a private credential set from a Subject instance. The specific mechanism through which such
permission is set up is outside the scope of the Jakarta Connector Architecture.

If the Subject instance contains a PasswordCredential instance, the resource adapter extracts the
username and password from the PasswordCredential . It uses the security information to authenticate
the resource principal, corresponding to the username, to the EIS during the creation of a connection.
In this case, the resource adapter uses an authentication mechanism that is EIS specific.

Since a Subject instance can carry multiple PasswordCredential instances, a ManagedConnectionFactory
should only use a PasswordCredential instance that has been specifically passed to it through the
security contract. The getManagedConnectionFactory method enables a ManagedConnectionFactory
instance to determine whether or not a PasswordCredential instance is to be used for sign-on to the
target EIS instance. The ManagedConnectionFactory implementation uses the equals method to
compare itself with the passed instance.

* Option B. The resource adapter explicitly checks whether the passed Subject instance carries a
GSSCredential instance using the getPrivateCredentials and getPublicCredentials methods defined in
the Subject interface.

In the case of Kerberos mechanism type, the resource adapter must extract Kerberos credentials using
the getPrivateCredentials method in the Subject interface.

138 Jakarta Connectors

10.1. Security Contract

The resource adapter uses the resource principal and its credentials, represented by the GSSCredential
interface, in the Subject instance to go through the EIS sign-on process. For example, this option is used
for Kerberos-based credentials that have been acquired by the resource principal through
impersonation.

A resource adapter uses the getter methods defined in the GSSCredential interface to extract
information about the credential and its principal. If a resource adapter is using the GSS mechanism,
the resource adapter uses a reference to the GSSCredential instance in an opaque manner and is not
required to handle any mechanism-specific credential representation. However, a resource adapter
may need to interpret credential representation if the resource adapter initiates authentication in an
implementation-specific manner.

* Option C. If the application server invokes the
ManagedConnectionFactory.createManagedConnection method with a null Subject instance, a
resource adapter has the following options:

o The resource adapter should extract security information passed through the
ConnectionRequestInfo instance. The resource adapter should authenticate the resource
principal by combining the configured security information on the ManagedConnectionFactory
instance with the security information passed through the ConnectionRequestinfo instance . The
default behavior for the resource adapter is to allow the security information in the
ConnectionRequestIinfo parameter to override the configured security information in the
ManagedConnectionFactory instance.

o If the resource adapter does not find any security configuration in the ConnectionRequestinfo
instance, the resource adapter wuses the default security configuration in the
ManagedConnectionFactory instance.

o If the EIS does not require authentication, the resource adapter does not need any security
information from the ConnectionRequestinfo instance, and hence may ignore such security
information. This may happen due to a disconnect between the application and the resource
adapter.

In the case of option A and option B, a resource adapter should throw a
jakarta.resource.spi.SecurityException , if the credential information contained in the Subject instance
is insufficient to perform authentication. A non-null Subject instance with no credentials is not
equivalent to a null Subject instance, since they indicate different sign-on modes, and hence the
resource adapter may handle them differently. A non-null Subject instance with no credentials may be
interpreted by the resource adapter as follows:

If the EIS requires authentication, the resource adapter should throw a
jakarta.resource.spi.SecurityException . That is, an empty or insufficient credential information is an
error.

If the EIS does not require authentication, the resource adapter does not need any security information
from the non-null Subject instance, and hence may ignore the Subject instance. This may happen due to
a disconnect between the application and the resource adapter.

Jakarta Connectors 139

10.1. Security Contract

10.1.9. ManagedConnection

A resource adapter can re-authenticate a physical connection (that is, one that already exists in the
connection pool under a different security context) to the underlying EIS. A resource adapter performs
re-authentication when an application server calls the getConnection method with a security context,
passed as a Subject instance, different from the context previously associated with the physical
connection.

If a resource adapter supports re-authentication, the matchManagedConnections method in
ManagedConnectionFactory may return a matched ManagedConnection instance with the assumption
that the ManagedConnection . getConnection method will later switch the security context through re-
authentication. Note that the matchManagedConnections method should consider a
ManagedConnection instance as immutable. There is no authentication involved in the
matchManagedConnections method.

Support for re-authentication depends on whether an underlying EIS supports the re-authentication
mechanism for existing physical connections. If a resource adapter does not support re-authentication,
the getConnection method should throw a jakarta.resource.spi.SecurityException if the passed Subject in
the getConnection method 1is different from the security context associated with the
ManagedConnection instance.

public interface jakarta.resource.spi.ManagedConnection {

public Object getConnection(
javax.security.auth.Subject subject,
ConnectionRequestInfo cxRequestInfo)
throws ResourceException;

The getConnection method returns a new connection handle. If re-authentication is successful, the
resource adapter has changed the security context of the underlying ManagedConnection instance to
that associated with the passed Subject instance.

A resource adapter has the following options for handling ManagedConnection.getConnection
invocation if it supports re-authentication:

* Option A. The resource adapter extracts the PasswordCredential instance from the Subject and
performs an EIS-specific authentication. This option is similar to option A defined in the
specification of the method createManagedConnection on the interface ManagedConnectionFactory
(refer to ManagedConnectionFactory).

* Option B. The resource adapter extracts GSSCredential instance from the Subject and manages
authentication either through the GSS mechanism or an implementation-specific mechanism. This
option is similar to option B defined in the specification of the method createManagedConnection
on the interface ManagedConnectionFactory (refer to ManagedConnectionFactory).

140 Jakarta Connectors

10.2. Requirements

* Option C. In this case, the Subject parameter is null . The resource adapter extracts security
information from the ConnectionRequestinfo (if there is any) and performs authentication in an
implementation-specific manner. This option is similar to option C defined in the specification of
the method createManagedConnection on the interface ManagedConnectionFactory (refer to
ManagedConnectionFactory).

10.2. Requirements

The following are the requirements defined by the security contract:

10.2.1. Resource Adapter

The following are the requirements defined for a resource adapter:

* The resource adapter must support the security contract by implementing the method
ManagedConnectionFactory.createManagedConnection .

* The resource adapter is not required to support re-authentication as part of its
ManagedConnection.getConnection method implementation.

» If the security information provided by the component or the container is not adequate to
authenticate the caller, or if the security information is erroneous, the resource adapter must
throw a SecurityException to indicate the error condition.

» The resource adapter must specify its support for the security contract as part of its deployment
descriptor or through metadata annotations. The relevant deployment descriptor elements are:
authentication-mechanism , authentication-mechanism-type , reauthentication-support and
credential-interface (refer to Requirements for details). The AuthenticationMechanism annotation
described in @AuthenticationMechanism may also be used for this purpose.

10.2.2. Application Server
The following are the requirements defined for an application server:
* The application server must wuse the method ManagedConnectionFactory .-
createManagedConnection to pass the security context to the resource adapter during EIS sign-on.

* The application server must be capable of using options A and C as specified in
ManagedConnectionFactory for the security contract.

» The application server provides an implementation of the GSSCredential interface if the following
conditions are both true:

- The application server supports authentication mechanisms, specified as authentication-
mechanism-type in the deployment descriptor, other than BasicPassword mechanism. For
example, the application server should implement the GSSCredential interface to support the
kerbv5 authentication mechanism type.

o The application server supports the deployment of resource adapters that are capable of

Jakarta Connectors 141

10.2. Requirements

handling GSSCredential , and thereby option B as specified in ManagedConnectionFactory, as
part of the security contract.

* The application server must implement the method allocateConnection in its ConnectionManager
implementation.

* The application server must configure its use of the security contract based on the security
requirements specified by the resource adapter in its deployment descriptor. For example, if a
resource adapter specifies that it supports only BasicPassword authentication, the application
server should use the security contract to pass a PasswordCredential instance to the resource
adapter.

142 Jakarta Connectors

11.1. Overview

Chapter 11. Work Management

This chapter specifies a contract between an application server and a resource adapter that allows a
resource adapter to do work, such as monitor network endpoints and call application components, by
submitting Work instances to an application server for execution. The application server dispatches
threads to execute submitted Work instances. This allows a resource adapter to avoid creating or
managing threads directly, provides a mechanism for a resource adapter to perform work, allows an
application server to efficiently pool threads, and have more control over its runtime environment.
The resource adapter can control the security context and transaction context with which Work
instances are executed.

11.1. Overview

Some resource adapters merely function as a passive library that executes in the context of an
application thread. They do not need to create threads explicitly to do their work. But more
sophisticated resource adapters may need threads to function properly. Such resource adapters may
use threads to listen to network endpoints, process incoming data, communicate with a network peer,
do its internal work, or dispatch calls to application components.

Even though a resource adapter may create Java threads directly and use them to do its work, an
application server may prevent it from creating threads for efficiency, security, and manageability
reasons. In such situations, a resource adapter requires a mechanism to obtain threads from an
application server to do its work.

The work management contract provides such a mechanism which allows a resource adapter to
submit Work instances to an application server for execution. The application server dispatches
threads to execute submitted Work instances. This allows a resource adapter to avoid creating or
managing threads directly, provides a mechanism for the resource adapter to do its work, and allows
an application server more control over its runtime environment.

There are several advantages in allowing an application server to manage threads instead of a
resource adapter:

* An application server is optimally designed to manage system resources such as threads. It may
pool threads and reuse them efficiently across different resource adapters deployed in its runtime
environment.

* Aresource adapter may create non-daemon threads that interfere with the orderly shutdown of an
application server. It is desirable for an application server to own all the threads to exercise more
control over its runtime environment.

« Since an application server knows the overall state of its runtime environment, it may make better
decisions on granting threads to a resource adapter, and this leads to better manageability of its
runtime environment.

* An application server may need to enforce control over the runtime behavior of its system

Jakarta Connectors 143

11.2. Goals

components, including resource adapters. For example, an application server may choose to
intercept operations on a thread object, perform checks, and enforce correct behavior.

* An application server may disallow resource adapters from creating their own threads based on its
security policy setting, enforced by a security manager.

11.2. Goals

» Provide a flexible work execution model to handle the thread requirements of a resource adapter.
* Provide a mechanism for an application server to pool and reuse threads.

» Exercise more control over thread behavior in a managed environment.

11.3. Work Management Model

A resource adapter obtains a WorkManager instance from the BootstrapContext instance provided by
the application server during its deployment. The resource adapter may create Work instances to do its
work and submit them to the WorkManager along with an optional execution context for execution.

The application server has a pool of free threads waiting for a Work instance to be submitted. When a
Work instance is submitted, one of the free threads picks up the Work instance, sets up an appropriate
execution context and calls the run method on the Work instance. The application server is free to
choose an appropriate thread to execute the Work instance. There is no restriction on the number of
Work instances submitted by a resource adapter or when Work instances may be submitted. When the
run method on the Work instance completes, the application server reuses the thread.

The application server may decide to reclaim active threads based on load conditions. It calls the
release method on specific Work instances from a separate thread. This serves only as a hint to the
resource adapter to release the active thread executing the Work instance. The resource adapter
should periodically monitor such hints and do the necessary internal cleanup to avoid any
inconsistencies. It is expected that a resource adapter uses thread resources carefully and releases
them when not in use.

The application server is free to implement its own thread pooling strategy. However, the application
server must use threads of the same thread priority level to process Work instances submitted by a
specific resource adapter. This ensures that multiple threads processing Work instances from the same
resource adapter have equal claim over CPU resources. This assumption helps the resource adapter
build its own internal priority-based task queue without having to worry about thread priority levels.

11.3.1. Requirements

The application server must use threads of the same thread priority level to process Work instances
submitted by a specific resource adapter.

Work Management Contract (Object Diagram)

144 Jakarta Connectors

11.3. Work Management Model

Application Server Resource Adapter

getWorkManager()

doWork(), startWork()
scheduleWork()

run(), release()

getXid(), setXid()

getTransactionTimeout()
setTransactionTimeout()

workAccepted(), workStarted()

workRejected(),
workCompleted()

getType(), getWork()

getStartTime(),
getException()

getErrorCode()

Work Management Contract (Interfaces)

Jakarta Connectors 145

11.3. Work Management Model

Code Example jakarta.resource.spi.work

-

package jakarta.resource.spi.work;

import java.util.EventObject;

import java.util.EventListener;

import javax.transaction.xa.Xid;

import jakarta.resource.ResourceException;
import jakarta.resource.NotSupportedException;

public interface Work extends Runnable {
void release();

}

public interface WorkManager {

long IMMEDIATE = OL; // immediate action
long INDEFINITE = Long.MAX_VALUE; // no time constraint
long UNKNOWN = -1; // indicates an unknown value.

void doWork(Work work) throws WorkException; // startTimeout = INDEFINITE

146 Jakarta Connectors

11.3. Work Management Model
void doWork(Work work, long startTimeout, ExecutionContext ctx, WorkListener 1lsnr)
throws WorkException;
long startWork(Work work) throws WorkException; // startTimeout = INDEFINITE

long startWork(Work work, long startTimeout, ExecutionContext ctx, WorkListener 1snr)
throws WorkException;

void scheduleWork(Work work) throws WorkException; // startTimeout = INDEFINITE

void scheduleWork(Work work, long startTimeout, ExecutionContext ctx, WorkListener 1snr)
throws WorkException;

}
public interface WorkListener extends EventlListener {
void workAccepted(WorkEvent e);

void workRejected(WorkEvent e);

void workStarted(WorkEvent e);

void workCompleted(WorkEvent e);
}
public class WorkAdapter implements WorkListener {
public void workAccepted(WorkEvent e) {}

public void workRejected(WorkEvent e) {}

public void workStarted(WorkEvent e) {}

public void workCompleted(WorkEvent e) {}

}

public class WorkEvent extends EventObject {
public static final int WORK_ACCEPTED = 1;

public static final int WORK_REJECTED = 2;

public static final int WORK_STARTED = 3;
public static final int WORK_COMPLETED = 4;

Jakarta Connectors 147

11.3. Work Management Model

public WorkEvent(Object source, int type, Work work, WorkException exc) { ... }

public WorkEvent(Object source, int type, Work work, WorkException exc, long
startDuration) {
.}
public int getType() { ... }
public Work getWork() { ... }
public long getStartDuration() { ... }

public WorkException getException() { ... }

public class ExecutionContext {

public void setXid(xid) { ... }

public Xid getXid() { ... }

public long getTransactionTimeout() { ... }
public void setTransactionTimeout(long seconds)

throws NotSupportedException { ... }

public class WorkException extends ResourceException {

// Indicates an internal error condition.
public static final String INTERNAL = "-1";

// Undefined error code.
public static final String UNDEFINED = "@";

// Indicates start timeout expiration.
public static final String START_TIMED_OUT = "1";

// Indicates that concurrent work within a transaction is

148 Jakarta Connectors

11.3. Work Management Model

// disallowed.
public static final String TX_CONCURRENT_WORK_DISALLOWED = "2";

// Indicates a failure in recreating the specified transaction.
public static final String TX_RECREATE_FAILED = "3";

public WorkException() { ... }

public WorkException(String message) { ...

}

public WorkException(Throwable cause) { ...

}

public WorkException(String message, Throwable cause) { ... }

public String getMessage() { ... }

public class WorkRejectedException extends WorkException {
public WorkRejectedException() { ... }

public WorkRejectedException(String message)
{...}

public WorkRejectedException(Throwable cause) { ... }

public WorkRejectedException(String message, Throwable cause)

{ ...}

}

public class WorkCompletedException extends WorkException {
public WorkCompletedException() { ... }

public WorkCompletedException(String message) { ... }
public WorkCompletedException(Throwable cause) { ... }

public WorkCompletedException(String message, Throwable cause)

{...}

Jakarta Connectors 149

11.3. Work Management Model

public class RetryableUnavailableException extends UnavailableException
implements jakarta.resource.spi.RetryableException {

11.3.2. Work Interface

The Work interface models a Work instance which is executed by a WorkManager upon submission.
This is implemented by a resource adapter.

public interface Work extends Runnable {

void release();

* run method: The WorkManager dispatches a thread that calls the run method to begin execution of
a Work instance. The execution completes when the run method returns, with or without an
exception. The Work instance can treat the calling thread as any Java thread. However, the
application server may interpose java.lang.Thread methods and perform checks. The
WorkManager must catch any exception thrown during Work processing, which includes execution
context setup, and wrap it with a WorkCompletedException set to an appropriate error code, which
indicates the nature of the error condition.

* release method: The WorkManager may call the release method to request the active Work
instance to complete execution as soon as possible. This would be called on a separate thread than
the one currently executing the Work instance. Since this method call causes the Work instance to
be simultaneously acted upon by multiple threads, the Work instance implementation must be
thread-safe, and this method must be re-entrant.

The application server thread that calls the run method in the Work implementation must execute
with an unspecified context if no execution context has been specified, or must execute with the
specified execution context. It must have at least the same level of security permissions as that of the
resource adapter instance. Further, the application server thread that calls the run and release
methods, may or may not have access to a JNDI context.

The JNDI context of an accessing application is available to a resource adapter by way
of the thread that uses its connection object. Refer to the note in Managed Application

0 Scenario. The thread that accesses the connection object could be an application
thread, or, could be a Work object accessing an application component. In the latter
case, the worker thread gains access to the application’s JNDI context during the
method call on the component.

Both the run and release methods in the Work implementation may contain synchronization blocks

150 Jakarta Connectors

11.3. Work Management Model

but they must not be declared as synchronized methods.

11.3.3. WorkManager Interface

The WorkManager interface provides a mechanism to submit Work instances for execution. This is
implemented by an application server. A WorkManager instance can be obtained by calling the get
WorkManager method of the BootstrapContext instance. The BootstrapContext instance is provided by
the application server when a resource adapter instance is bootstrapped. The WorkManager instance is
not required to be unique.

This WorkManager facility frees the resource adapter from having to create Java threads directly to do
its work. Further, this allows efficient pooling of thread resources by the application server and more
control over thread usage.

public interface WorkManager {

long IMMEDIATE = OL; // immediate action (as soon as possible)
long INDEFINITE = Long.MAX_VALUE; // no time constraint
long UNKNOWN = -1; // unknown start delay duration

// startTimeout = INDEFINITE
void doWork(Work work) throws WorkException;

void doWork(Work work, long startTimeout, ExecutionContext, WorkListener) throws
WorkException;

// startTimeout = INDEFINITE
long startWork(Work work) throws WorkException;

long startWork(Work work, long startTimeout, ExecutionContext, WorkListener) throws
WorkException;

// startTimeout = INDEFINITE
void scheduleWork(Work work) throws WorkException;

void scheduleWork(Work work, long startTimeout, ExecutionContext, WorkListener) throws
WorkException;

}

* doWork method: This call blocks until the Work instance completes execution. The application server
may execute a Work instance submitted by way of the doWork method using the same calling
thread. This method is useful to do work synchronously. For nested Work submissions, this
provides a first in, first out (FIFO) execution start ordering and last in, first out (LIFO) execution
completion ordering guarantee.

Jakarta Connectors 151

11.3. Work Management Model

» startWork method: This call blocks until the Work instance starts execution but not until its
completion. This returns the time elapsed in milliseconds from Work acceptance until the start of
execution. Note, this does not offer real-time guarantees. A value of -1 (WorkManager UNKNOWN)
must be returned, if the actual start delay duration is unknown. This method is equivalent to the
java.lang.Thread.start method. For nested Work submissions, this provides a FIFO execution start
ordering guarantee, but no execution completion ordering guarantee.

* scheduleWork method: This call does not block and returns immediately once a Work instance has
been accepted for processing. This is useful for doing work asynchronously. This does not provide
any execution start or execution completion ordering guarantee for nested Work submissions.

The optional startTimeout parameter specifies a time duration in milliseconds within which the
execution of the Work instance must start. Otherwise, the Work instance is rejected with a
WorkRejectedException set to an appropriate error code (WorkException.START TIMED_OUT). Note,
this does not offer real-time guarantees. The WorkManager may also indicate that the failure to accept
the Work submission is transient and that the resource adapter may retry the Work submission by
throwing the RetryableWorkRejectedException .

The optional ExecutionContext parameter provides an execution context with which the Work instance
must be executed. The execution context is represented by an ExecutionContext instance containing
context information. The resource adapter is responsible for populating the ExecutionContext instance
with an appropriate execution context. The default implementation provides a null context, that is, an
ExecutionContext instance with null values. A Work instance with null context executes with an
unspecified context.

The optional WorkListener parameter provides a callback event listener object which is notified when
the various Work processing events (work accepted, work rejected, work started, work completed)
occur. Refer to WorkListener Interface and WorkEvent Class.

The various stages in Work processing are:

11.3.3.1. Work Submit

A Work instance is being submitted for execution. The Work instance may either be accepted or
rejected with a WorkRejectedException set to an error code. A submitted Work instance, irrespective of
the mode of submission: doWork method, startWork method or scheduleWork method, does not
automatically inherit the submitter’s execution context. It executes with an unspecified execution
context if none is specified, or it executes with the specified context.

Work Processing Stages and their Outcomes

152 Jakarta Connectors

11.3. Work Management Model

work completes
work started > work completed

N
start
accept
._> _é work accepted

reject
A 4
work rejected

A 4

reject

11.3.3.2. Work Accepted

The submitted Work instance has been accepted for further processing. The accepted Work instance
may either start execution or may be rejected again with a WorkRejectedException set to an
appropriate error code.

There is no guarantee on when the execution starts unless a start timeout duration is specified. When a
start timeout is specified, the Work execution must be started within the specified duration, failing
which a WorkRejectedException set to an error code WorkException. TIMED_OUT is thrown. This is not
a real-time guarantee. The start delay duration is measured from the moment a Work instance is
accepted for processing.

11.3.3.3. Work Rejected

The Work instance has been rejected. The Work instance may be rejected during Work submittal or
after the Work instance has been accepted, but before Work instance starts execution. The rejection
may be due to internal factors or start timeout expiration. A WorkRejectedException with an
appropriate error code which indicates the nature of the error condition, is thrown in both cases.

Since the scheduleWork method returns after a Work instance has been accepted and does not block
until a Work instance starts, a callback event listener may be wused to receive the
WorkRejectedException . See WorkListener Interface and WorkEvent Class for details.

11.3.3.4. Work Started

The execution of the Work instance has started. This means a thread has been allocated for Work
execution. But this does not guarantee that the allocated thread has been scheduled to run on a CPU
resource. Once execution is started, the allocated thread sets up an appropriate execution context and
calls the run method on the Work instance. Note, any exception thrown during execution context setup
or while executing the run method on the Work instance leads to processing completion.

11.3.3.5. Work Completed

The execution of the Work instance has been completed. The execution may complete with or without
an exception. The WorkManager must catch any exception thrown during Work processing, which
includes execution context setup, and wrap it with a WorkCompletedException set to an appropriate
error code which indicates the nature of the error condition.

Jakarta Connectors 153

11.3. Work Management Model

Since the scheduleWork method and startWork method do not block until execution completion, a
callback event listener may be used to receive the WorkCompletedException. See WorkListener
Interface and WorkEvent Class for details).

11.3.3.6. Requirements

» The application server must implement the WorkManager interface.
* The application server must allow nested Work submissions.
* Both the run and release methods must be declared as non-synchronized methods.

* When the application server is unable to recreate an execution context if it is specified for the
submitted Work instance, it must throw a WorkCompletedException set to an appropriate error
code.

* The WorkManager must catch any exception thrown during Work processing, which includes
execution context setup and wrap it with a WorkCompletedException set to an appropriate error
code.

* The application server must execute a submitted Work instance with an unspecified context if no
execution context has been specified, or must execute it with the specified execution context. That
is, a submitted Work instance must never inherit the submitter’s execution context when no
execution context is specified.

« If the application server is unable to start Work execution when a start timeout is specified for the
submitted Work instance, it must reject the Work instance with a WorkRejectedException set to
WorkException.START_TIMED_OUT.

* The application server must use a value of -1 (WorkManager .UNKNOWN) to indicate an unknown
Work start delay duration.

Blocking Durations of Various Work Submissions

I< WorkRejectedException WorkCompleted-Exception >I
Work submit Work accepted Work started Work completed

.

.‘\,‘.0.0.

doWork(- : :
startWork() & v >
scheduleWork() € >

154 Jakarta Connectors

11.3. Work Management Model

Work Submission - Blocking Behavior (Sequence Diagram)

Resource Adapter Work Manager Java thread Work
(from adapter) (from app server) (from app server) (from adapter)

1. create an instance

. . .
. . .

...................... :......................:......................>:
. . . .

2. doWork() [blocks until work completes]
> .

7 .
3. dispatches a Java thread : :
..................... . .
N 4. setup execution context N
. N,
. 7.
. and call run() .
Seeoeococcccscscscscncns #ececccccccsccsssssans L AL
1. create an instance N
2. startWork() [blocks until work starts (that is, a thread is allocated)]
N ¢
> .
3. dispatches a Java thread
4. setup execution context
.
,0
and call run() .
e ececececeeaeeaanenan e eeee et eaan meseeesesesececscasenenmonnon®
.......................... L R R R R R R R TAr
1. create an instance .
2. scheduleWork() [blocks until work is accepted] .
N . .
7 . .
3. dispatches a Java thread N
..................... .

4. setup execution context

and call run()

......
..

11.3.4. WorkListener Interface and WorkEvent Class

The WorkListener interface is optionally implemented by the resource adapter. The WorkEvent and
WorkAdapter classes are defined by the Connector 1.5 specification. The WorkListener instance is

Jakarta Connectors 155

11.3. Work Management Model

supplied to the WorkManager during Work submittal and provides an event listener callback
mechanism in order to be notified when the various Work processing events, such as work accepted,
work rejected, work started, and work completed, occur. When a WorkListener is provided by the
resource adapter, the application server must send event notifications to the WorkListener. These
notifications may occur from any thread with an unspecified context.

public interface WorkListener extends EventlListener {
void workAccepted(workEvent);
void workRejected(WorkEvent);
void workStarted(WorkEvent);

void workCompleted(WorkEvent);

The WorkEvent class and WorkAdapter abstract class:

156 Jakarta Connectors

11.3. Work Management Model

public class WorkEvent extends EventObject {

public static final int WORK_ACCEPTED = 1;

public static final int WORK_REJECTED = 2;

public static final int WORK_STARTED = 3;

public static final int WORK_COMPLETED = 4;

public WorkEvent(Object source, int type, Work work, WorkException exc){ ... }

public WorkEvent(Object source, int type, Work work, WorkException exc, long
startDuration) {

i..
public int getType() { ... }
public Work getWork() { ... }
public long getStartDuration() { ... }

public WorkException getException() { ... }

public abstract class WorkAdapter implements WorkListener {
public void workAccepted(WorkEvent e) {}

public void workRejected(WorkEvent e) {}

public void workStarted(WorkEvent e) {}

public void workCompleted(WorkEvent e) {}
+

The WorkEvent instance provides the following information:

* The event type.

» The source object, that is, the Work instance, on which the event initially occurred.
* A handle to the associated Work instance.

* An optional start delay duration in millisecond.

* Any exceptions that were thrown during Work processing. Possible exceptions are
WorkRejectedException , and WorkCompletedException.

Jakarta Connectors 157

11.3. Work Management Model

The type of the event determines the specific contents of a WorkEvent.

The WorkAdapter class is provided as a convenience for easily creating WorkListener instances by
extending this class and overriding only those methods of interest. This is a standard event listener
pattern used in Java APISs.

11.3.4.1. Requirements

* The WorkListener instance must not make any thread assumptions and must be thread-safe. That
is, a notification can occur from any arbitrary thread with an unspecified context.

* The application server must send Work events to the WorkListener instance, if any, provided by the
resource adapter.

* The WorkListener implementation must not make any assumptions on the ordering of
notifications.

* The application server must use a value of -1 (WorkManager .UNKNOWN) to indicate an unknown
Work start delay duration.

11.3.5. ExecutionContext Class

public class ExecutionContext \{

public void setXid(xid) { ... }

public Xid getXid() { ... }

public long getTransactionTimeout() { ... }

public void setTransactionTimeout(long seconds) throws NotSupportedException { ... }

The ExecutionContext class allows a resource adapter to specify an execution context, such as a
transaction context, with which the Work instance must be executed. The resource adapter is
responsible for populating the ExecutionContext instance with an appropriate execution context. The
default implementation provides a null context.

It is better for ExecutionContext to be a class rather than an interface because:

» There is no need for a resource adapter to implement this class. It is only required to implement
the context information, like transaction context.

* The resource adapter code does not have to change when the ExecutionContext class evolves. For
example, more context types could be added to the ExecutionContext class in the future without
forcing resource adapter implementations to change.

158 Jakarta Connectors

11.3. Work Management Model

Work Submission - Callback Mechanism (Sequence Diagram)

Resource Adapter WorkManager Java thread Work Work

(from adapter) (from app server) (from app server) (from adapter) (from adapter)

© 1.create an instance .
2. create an instance . .
3. scheduleWork() [startWerk() or doWork() may be used as well]
1N .
> .
4. create an instance : N
5. workAccepted(), workRejécted()
N
7.
6. when Work is accepted, dispatches a thread which sets up’ N
A
o S
an execution context and calls run() .
7. create an instance . .
8. workStarted() .
\ o
r &
9. create an instance . .
10. workCompleted() .
A Y
P40

11.3.6. Resource Adapter Thread Usage Recommendations

* Resource adapters are strongly recommended to use the work management contract to do work
and interact with the application server only from within a Work instance, instead of using Java
threads directly. This allows the resource adapter to be maximally portable across multiple
deployment environments with different security settings.

* Resource adapters are allowed to create Java threads directly as permitted by the server security
settings.

Jakarta Connectors 159

11.4. Periodic Execution of Work Instances

 If a resource adapter chooses to use Java threads directly, it is recommended they use the threads
as daemon threads, as it does not interfere with an orderly shutdown of the server.

11.4. Periodic Execution of Work Instances

A resource adapter may need to periodically execute Work instances. It may use the java.util. Timer
facility available in the Java platform or may use the BootstrapContext instance provided by the
application server to obtain a Timer instance.

A resource adapter may not be able to directly create a Timer instance, if it does not have adequate
runtime permissions to create threads. This is because the Timer instance starts a background thread.
In such a case, the resource adapter can instead use the BootstrapContext instance to obtain a Timer
instance from the application server.

package jakarta.resource.spi;

import java.util.Timer;
import jakarta.resource.spi.UnavailableException;

public interface BootstrapContext {
. // other methods

// returns a new or an unshared instance
Timer createTimer() throws UnavailableException;

When the createTimer method of the BootstrapContext instance is invoked, the application server
provides a new Timer instance or an unshared instance (that is, no one else has a reference) with an
empty task queue. The application server must throw an UnavailableException if a Timer instance is
unavailable; the resource adapter may retry later. The application server must throw an
java.lang.UnsupportedOperationException, if it does not support the Timer service.

Sample code to illustrate periodic Work executions using a Timer instance:

160 Jakarta Connectors

11.4. Periodic Execution of Work Instances

package com.xyz.adapter;

import java.util.*;
import jakarta.resource.spi.*;
import jakarta.resource.spi.work.WorkManager;

// ResourceAdapter JavaBean
public class MyResourceAdapterImpl implements ResourceAdapter {

BootstrapContext bootstrapCtx = null;

public void start(BootstrapContext ctx) {
bootstrapCtx = ctx;
... // other operations

}

... // other methods
}

{ // sample resource adapter code snippet toshow Timer usage
MyResourceAdapterImpl myRA = ... // getResourceAdapter JavaBean

Timer timer = myRA.bootstrapCtx.createTimer(); // get a Timer instance
WorkManager workManager = myRA.bootstrap(Ctx.getWorkManager();

timer.schedule(
new TimerTask () {
public void run() {
try {
workManager.scheduleWork(new MyWork());
} catch (WorkException we) {
we.printStackTrace();

}

}
}, @0, 1000); // one second interval

11.4.1. Illustration: Using a Work Instance to Listen on Multiple Network
Endpoints

J2SE Version 1.4 provides the java.nio package that includes a multiplexed, non-blocking I/O facility.

Jakarta Connectors 161

11.4. Periodic Execution of Work Instances

Using the java.nio package it is possible for a single thread, such as a Work instance, to listen on
multiple network endpoints or ports. Prior to the java.nio facility each network endpoint needed a
separate thread to listen to incoming data.

11.4.2. Work Management in a Non-Managed Environment

Although the work management contract is primarily intended for a managed environment, it may
still be used in a non-managed environment provided the application that bootstraps a resource
adapter instance is capable of functioning as a WorkManager .

A resource adapter is free to create Java threads as permitted by the security policy settings of the non-
managed environment.

11.4.3. Resource Adapter association

A Work or DistributableWork instance (see Distributed Work processing) may implement the
ResourceAdapterAssociation interface. The ResourceAdapterAssociation interface specifies the methods
to associate the Work instance with a ResourceAdapter JavaBean.

The application server must establish an association between the resource adapter instance and the
Work instance before the exection of the Work instance has been started (Refer Work Started).

When a Work instance has been distributed to a new WorkManager instance (for example, as in
Distributed Work processing), the resource adapter instance that is associated with the Work instance
must be available in the WorkManager instance that the Work has been distributed to. This allows the
Work instance to use application server facilities like WorkManager, MessageEndpointFactory etc that
are specific to the instance that the Work has been distributed to.

11.4.4. Distributed Work processing

An application server instance’s WorkManager may choose to distribute a Work instance submitted by
a resource adapter to another WorkManager residing in a different application server instance.
Distribution of Work processing to different instances may be done for achieving optimal utilization of
system resources or for providing better response times. These WorkManager instances may span
across multiple Java virtual machines running on the same host or different hosts.

Neither the application server nor the resource adapter must support distributed Work processing.

11.4.4.1. DistributableWork Interface

162 Jakarta Connectors

11.4. Periodic Execution of Work Instances

package jakarta.resource.spi.work;
import java.io.Serializable;

//Marker interface to indicate to the WorkManager that the
//Mork may be distributed to a different WorkManager for execution

public interface DistributableWork extends Work, Serializable {

}

Work instances that may be distributed by

a _WorkManager_ must implement the _DistributableWork_ interface. A
Work instance that implements the _DistributableWork_ interface must
not have any reference to local resource-adapter state. This allows the
WorkManager to delegate processing of the _Work_ instance to a
different _WorkManager_ instance that is running in a different Java
virtual machine.

All artifacts that may be coupled to the application server instance where the Work is executed in,
must be obtained through the ResourceAdapterAssociation mechanism discussed in Resource Adapter
association.

11.4.4.2. DistributableWorkManager Interface

package jakarta.resource.spi.work;

//Marker interface to indicate that the WorkManager supports the
//distributed processing of Work instances

public interface DistributableWorkManager extends WorkManager {

}

A WorkManager implementation that supports the submission of DistributableWork instances must
implement the DistributableWorkManager marker interface. This allows the resource adapter to
programmatically determine whether the WorkManager supports the submission of DistributableWork
instances.

When a DistributableWork instance is submitted to DistributableWorkManager , the WorkManager may
finally execute the Work instance in the context of another WorkManager instance. This WorkManager
instance may reside on a different host, process or JVM instance. This specification does not define the
communication protocol or the mechanics of how a Work instance is transmitted and handled between

Jakarta Connectors 163

11.4. Periodic Execution of Work Instances

DistributableWorkManager instances.

The application server that supports DistributableWorkManager along with inputs from the
administrator and deployer , must ensure that the environment made available to the
DistributableWork instance is consistent irrespective of whether the DistributableWork instance is
executed in a local or remote manner.

11.4.4.3. DistributableWork Submission and Processing

A resource adapter submits the DistributableWork instance to the DistributableWorkManager through
the WorkManager submission methods specified in WorkManager Interface. A
DistributableWorkManager may then distribute the submitted DistributableWork instance to another
WorkManager instance for processing as shown in the following figure.

When a DistributableWork instance is submitted to a WorkManager that does not implement
DistributableWorkManager interface, the WorkManager must execute the Work locally.

Although it is recommended for a DistributableWorkManager to process all Work submissions in a
distributed fashion, the DistributableWorkManager may execute a Work submitted through doWork()
locally. When a WorkListener is provided by the resource adapter during Work submission, the
application server must send event notifications to the WorkListener . (see WorkListener Interface and
WorkEvent Class).

A DistributableWork instance may also use the mechanisms described in Generic Work Context and
Security Inflow (see Generic Work Context and Security Inflow) chapters to control the execution
context of the Work instance. A DistributableWorkManager must support the requirements in Generic
Work Context and Security Inflow.

Distributed Work submission and processing (Sequence Diagram)

164 Jakarta Connectors

11.4. Periodic Execution of Work Instances

Resource Adapter DistributableWork DistributableWork : Another Work Java thread
(from adapter) Manager (from app server) (from adapter) . Manager instance (from app server)
: 1. create an instance : :
2. scheduleWork() . . .
\ - . .
r . .

. . . 4. setup execution contexf
. . . N
. . . 7.
: : : and call run() .

Jakarta Connectors 165

12.1. Overview

Chapter 12. Generic Work Context

This chapter specifies a contract between an application server and a resource adapter that enables a
resource adapter to control the execution context of a Work instance that it has submitted to the
application server for execution. To propagate an imported context to the application server, the
resource adapter submits a Work instance that implements the WorkContextProvider interface. The
application server then establishes the provided context as the execution context of the Work instance
during its execution. The WorkContext model is designed to be generic so that a resource adapter can
flow in different types of contextual information apart from the standard transaction and security
WorkContexts defined in this chapter. For more information about Work management, see Work
Management.

12.1. Overview

The Work Management contract between the application server and a resource adapter enables a
resource adapter to do a task, such as communicating with the Enterprise Information System (EIS) or
delivering messages, by delivering Work instances for execution. The Transaction Inflow contract
builds upon the interfaces defined in the Work Management contract as described in Chapter 15,
“Transaction Inflow“. The contract enables the resource adapter to propagate an imported transaction
from the EIS to an application server, so that the application server and subsequent participants can
do work as part of the imported transaction.

The Generic Work Context Contract provides the mechanism for a resource adapter to augment the
runtime context of a Work instance with additional contextual information flown-in from the EIS. This
contract enables a resource adapter to control, in a more flexible manner, the contexts in which the
Work instances it submits are executed by the application server’s WorkManager .

A Generic Work context mechanism also enables an application server to support new message inflow
and delivery schemes. It also provides a richer contextual Work execution environment to the resource
adapter while still maintaining control over concurrent behavior in a managed environment.

Note that the application server is required to support the standard context types listed in Standard
and Custom Work Contexts.

12.2. Goals

The goals of the Generic Work Context Contract are:
* To provide a standard mechanism for a resource adapter to propagate an imported context to an
application server.

* To make the existing execution context mechanisms extensible and to provide better metadata to
both the application server and the resource adapter of new work context types.

* To design the work context contracts to be independent of the Connectors Work Management

166 Jakarta Connectors

12.3. Generic Work Context Model

Contract so as to enable the resource adapter to use such contexts in other asynchronous task
execution approaches. For more information on Work Management, see Chapter 10, “Work
Management*“.

* To standardize the most commonly used work contexts, such as Transaction Work Context and
Security Work Context. See Security Inflow.

* To be backward compatible with the existing Work submission and context assignment model
described in Work Management.

* To enable an application server to support new message inflow and delivery schemes and provide
a richer contextual Work execution environment to the resource adapter while still maintaining
control over concurrent behavior in a managed environment.

12.3. Generic Work Context Model

In this chapter all references to WorkManager should be read as references applicable to the
Connector WorkManager . See WorkManager Interface.

When a Work is submitted by a resource adapter to a WorkManager to be executed asynchronously,
one of the free threads picks up the Work instance, sets up an appropriate execution context and then
calls the run method on the Work instance. See Work Management Model for more information on
how a Work instance is handled by a WorkManager .

A resource adapter submits a Work instance that implements WorkContextProvider . The
WorkContextProvider interface indicates to the application server’s WorkManager that the resource
adapter requires additional work contexts to be established in the execution context during Work
execution.

When one of the free threads from the application server’s thread pool picks up the Work instance, if
the Work instance implements WorkContextProvider interface, it iterates through the collection of
WorkContext s provided by the Work instance and establishes the contextual information provided by
the WorkContext s as the execution context of the Work instance. It then calls the run method to
execute the Work instance.

The application server is free to use the WorkContext during context assignment in any order. The
resource adapter must not assume an order in the handling of the WorkContext s.

12.3.1. Standard and Custom Work Contexts

Certain EIS integration use cases require the propagation of other contextual information, apart from
Transactions, from the EIS to the application server. For example, a resource adapter might require the
propagation of security context information from the EIS to the application server during inbound
message delivery. The resource adapter might also require the execution of Work instances in the
context of the "flown-in" Security information. Other use cases that require the flowing in of contextual
information are:

Jakarta Connectors 167

12.3. Generic Work Context Model

* Scenarios where an EIS requires a “conversational” programming model with a MessageEndpoint
and the resource adapter is required to propagate "correlation" information to the
MessageEndpoint container to enable the application server to set up or re-create the necessary
state in the MessageEndpoint to maintain conversational session state.

* Propagating Availability or Quality-of-Service (QoS) related hints or metadata from the EIS so that
the application server WorkManager can execute the Work instance by leveraging those hints.

Transaction and Security work contexts are standardized by means of the TransactionContext and
SecurityContext interfaces. The propagation of Quality-of-Service hints to a WorkManager for the
execution of a Work instance is standardized through the HintsContext class. The application server
must support these three work contexts. A portable resource adapter can assume an application
server’s support for these three work contexts defined in the specification. The specification may
define additional context types in a future version of the specification.

An application server or a resource adapter may define and use custom WorkContext s. However a
resource adapter using these custom WorkContext s is non-portable and might not function as
expected in other application servers that do not implement the custom WorkContext . See Checking
Support for a WorkContext Type for a discussion about how resource adapters can check with the
WorkContext s supported by the application server.

12.3.2. Requirements

* The application server must support the establishment of TransactionContext , SecurityContext ,
and HintsContext contexts.

* The application server must support the WorkContext interface. If a resource adapter submits a
Work instance implementing the WorkContextProvider interface, the application server must use
the WorkContext s provided by the resource adapter to assign the execution context for that Work
instance.

Generic Work Context (Object Diagram)

168 Jakarta Connectors

12.3. Generic Work Context Model

Application Server

Resource Adapter

getWorkManager()

doWork(), startWork()
scheduleWork()

run(), release()

getWorkContexts()

getName(),
getDescription()

getXID()

getTransactionTimeout()

contextSetupComplete()

contextSetupFalled()

Generic Work Context (Interfaces)

Jakarta Connectors 169

12.3. Generic Work Context Model

jakarta.resource.spi.work

-

package jakarta.resource.spi.work;
public interface WorkContextProvider extends Serializable {

List<WorkContext> getWorkContexts();

}

public interface WorkContext extends Serializable{

String getName();

String getDescription();

¥

public class TransactionContext extends ExecutionContext implements WorkContext {
public TransactionContext(Xid xid) { ... }

public TransactionContext(Xid xid, long timeout){ ... }

public String getName(){
return "TransactionContext";

170 Jakarta Connectors

}

// ... other methods

}

public abstract class SecurityContext implements WorkContext {

public String getName(){
return "SecurityContext";

}

// other SecurityContext related methods

}

public class WorkContextErrorCodes {

// Indicates an unsuppored context type
public static final String UNSUPPORTED_CONTEXT_TYPE = "1";

// Indicates more than one contexts
// of the same type passed in for Work
public static final String DUPLICATE_CONTEXTS = "2";

// Indicates failure in recreating the WorkContext
public static final String CONTEXT_SETUP_FAILED = "3";

// Indicates that the container cannot support

// recreating the context
public static final String CONTEXT_SETUP_UNSUPPORTED = "4";

}

public interface WorkContextLifecyclelistener {

// indicates that the WorkContext was set successfully
void contextSetupComplete();

// Indicates that the WorkContext setup failed
void contextSetupFailed(String errorCode);

}

12.3. Generic Work Context Model

Jakarta Connectors 171

12.4. WorkContextProvider and WorkContext Interface

12.4. WorkContextProvider and WorkContext Interface

The WorkContext interface illustrates execution context information of a particular type. This
specification standardizes two WorkContext types: the TransactionContext class and SecurityContext
class, to represent the transaction and security context with which the Work instance must be executed
respectively. For more information on these classes, see TransactionContext Class and SecurityContext
Class.

The getName() and getDescription() methods may be used by the resource adapter developer and the
application server for debugging purposes.

package jakarta.resource.spi.work;

public interface WorkContext extends
Serializable{

String getName();

String getDescription();

Additional work contexts, based on specific EIS integration scenarios could be supported by an
application server and the resource adapter may use them.

The WorkContextProvider interface is an optional interface implemented by a Work instance to
indicate to the WorkManager , or its equivalent in other thread pooling implementations, that the task
encapsulated as the Work instance requires to be run with a specialized execution context.

package jakarta.resource.spi.work;

public interface WorkContextProvider extends
Serializable {

List<WorkContext> getWorkContexts();

}

When a resource adapter is required to control the execution context in which a Work instance is
executed, it creates a Work instance that implements WorkContextProvider . The Work instance
provides an implementation of the getWorkContexts method to return a List of WorkContext s that the
Work instance requires established as its execution context prior to execution.

When a Work that implements WorkContextProvider is submitted to the WorkManager for execution,

172 Jakarta Connectors

12.4. WorkContextProvider and WorkContext Interface

one of the free threads in the thread pooling implementation of the application server picks up the
Work for execution. The WorkManager makes a call to getWorkContexts to obtain the WorkContext s
that is required to be set as the execution context for the Work instance, iterates through the returned
List of WorkContext s, and sets them up as the execution context in which the Work instance is
executed in.

If the resource adapter returns a null or an empty List when the WorkManager makes a call to the
getWorkContexts method, the WorkManager must treat it as if no additional execution contexts are
associated with that Work instance and must continue with the Work processing.

When the container’s thread has completed the handling of the Work instance, it must cleanup all the
contextual information associated with that Work instance so that when the thread is reused for
another Work instance, the previous contextual information is not established for the new Work
instance.

The resource adapter must not make any changes to the state of a WorkContext after the Work instance
that is associated with that WorkContext has been submitted to the WorkManager .

Because nested Work submissions are allowed in the Connector WorkManager , the Connector
WorkManager must support nested contexts unless the WorkContext type prohibits them. See
WorkManager Interface for more information on nested Work submission related requirements.

WorkContext establishment during Work submission(Sequence Diagram)

Jakarta Connectors 173

12.4. WorkContextProvider and WorkContext Interface

Resource Adapter Work Manager Work Work

(from adapter) (from app server) (from adapter) (from adapter)

1. create an instance

...................... e,

2. scheduleWork() (startWork() or doiNork() may be used as well)
N ¢
2 .

3. when Work is accepted, dispatcﬁ a free
thread and establish execution context

. [if Work implements WorkContextProvider]

4. getWorkContexts() from Work *

N -
r 4
. [for each WorkContext]
5. get context information
N
>

and recreate imported transaction in application server

...

6. after establishing the execution tontext, call run()

N
r a0

12.4.1. Indicating Support for a WorkContext Type

A resource adapter provider can declare that it requires a list of WorkContext types to be supported by
the application server through the required-work-context element in the deployment descriptor of the
resource adapter (see Resource Adapter Provider) or by way of the Connector annotation (see
@Connector).

The application server must check whether all of the WorkContext types declared by the resource
adapter are supported by the application server during resource adapter deployment. The application
server must employ an exact type equality check (by using java.lang.Class.equals(java.lang.Class)) to
check for the support.

If the application server cannot support one or more of the WorkContext types declared in required-
work-context elements, it must fail deployment of the resource adapter.

174 Jakarta Connectors

12.4. WorkContextProvider and WorkContext Interface

12.4.2. Checking Support for a WorkContext Type

A resource adapter can check an application server’s support for a particular WorkContext type
through the isContextSupported() method in the BootstrapContext implementation provided by the
application server. This mechanism enables a resource adapter developer to dynamically change the
WorkContext s based on the support provided by the application server. For more information, see
ResourceAdapter JavaBean and Bootstrapping a Resource Adapter Instance.

public interface BootstrapContext {
// ... other operations

boolean isContextSupported(Class<? extends WorkContext> workContextClass);

}

The application server must employ an exact type equality check (by wusing
java.lang.Class.equals(java.lang.Class)) in isContextSupported , to check whether it supports the
WorkContext type provided by the resource adapter. This method must be idempotent, that is, all calls
to this method by a resource adapter for a particular WorkContext type must return the same Boolean
value throughout the lifecycle of that resource adapter instance.

This exact type check in isContextSupported enables a resource adapter to decide whether the
application server supports the contexts that the resource adapter is attempting to establish for a Work
instance. If a particular WorkContext class is not supported by the application server a resource
adapter may then either choose to fall back to a superclass that is supported by the application server
(again ascertained by way of the isContextSupported method) or fail the Work submission.

For WorkContext classes that are defined as abstract classes, such as SecurityContext , the resource
adapter must use the abstract class while invoking the isContextSupported method and not its
implementation class. For more information on SecurityContext class, see SecurityContext Class

For custom extensions of the standard WorkContext s, the resource adapter must always check support
for the most specific WorkContext first. It may then go up the inheritance hierarchy in order to find the
most specific WorkContext type supported by the application server.

12.4.3. Handling Errors During Context Assignment

As specified in WorkListener Interface and WorkEvent Class, the WorkManager must catch any
exception thrown during Work processing, which includes execution context setup (including
Checking Support for a WorkContext Type), and wrap it with a WorkCompletedException set to an
appropriate error code defined in WorkContextErrorCodes , which indicates the nature of the error
condition.

Jakarta Connectors 175

12.4. WorkContextProvider and WorkContext Interface

public class WorkContextErrorCodes \{

// Indicates an unsupported context type
public static final String UNSUPPORTED_CONTEXT_TYPE = "1";

// Indicates more than one contexts of the same type passed
// in for Work
public static final String DUPLICATE_CONTEXTS = "2";

// Indicates failure in recreating the WorkContext
public static final String CONTEXT_SETUP_FAILED = "3";

// Indicates that the container cannot support recreating
// the context
public static final String CONTEXT_SETUP_UNSUPPORTED = "4";

}

The application server must make the following checks during context assignment

* Because not all WorkContext instances provided by the resource adapter might be supported by the
application server, the application server must ensure that the WorkContext s provided by the
resource adapter are supported by the application server.

* The application server must also ensure that the WorkContext s provided by the resource adapter
do not have duplicates. For instance, a resource adapter must not be able to submit two instances
of the TransactionContext class. The application server must ensure that only one WorkContext
provided by the resource adapter implements the same WorkContext type supported by the
application server. If duplicates are detected, the application server must fail the Work submission
with a WorkCompletedException set to the DUPLICATE_CONTEXTS error code.

The check for support and duplicates during context assignment listed above, must be less strict than
the checks described in Indicating Support for a WorkContext Type and Checking Support for a
WorkContext Type. The application server must employ a java.lang.Class.isAssignable(java.lang.Class)
style check. Specifically, this method must check whether a WorkContext class that is supported by the
application server can be converted to the type provided by the resource adapter, by way of an identity
conversion or a widening reference conversion.

If a particular WorkContext type provided by the resource adapter is supported by the application
server, the application server must use the WorkContext as-is and not attempt to use it as a supported
parent type. That is, an application server must use the most specific WorkContext type it supports.

If a particular WorkContext type provided by the resource adapter is not supported by the application
server, the application server should be able to safely fallback to a superclass (excluding the
WorkContext interface) that is supported by it.

176 Jakarta Connectors

12.5. TransactionContext Class

If the above conditions are not met, the application server must fail the Work processing with a
WorkCompletedException with an appropriate error code to indicate the nature of the error condition.
Because the WorkCompletedException might not provide a resource adapter with adequate
information about the actual failure during context assignment, the resource adapter may implement
the WorkContextLifecycleListener to interpret the reasons why a context assignment of a particular
WorkContext instance failed. For more information, see Section 11.7 “WorkContextLifecycleListener
Interface”

12.5. TransactionContext Class

The TransactionContext class extends the ExecutionContext class, as described in ExecutionContext
Class. It represents the standard interface a resource adapter can use to propagate transaction context
information from the EIS to the application server. The Work instance and any message deliveries to
MessageEndpoint s in that Work instance must all be carried out in the transaction context provided by
the TransactionContext class.

public class TransactionContext extends ExecutionContext implements WorkContext {
public TransactionContext(Xid xid) {..}
public TransactionContext(Xid xid, long timeout) {..}

public String getDescription() {
return "Transaction Context";

public String getName() {
return "TransactionContext";

For a resource adapter, using the WorkContextProvider interface to effect transaction inflow is optional
but recommended. A resource adapter could still continue to use the existing Work submission
approach with an ExecutionContext and an application server must support this model as well.

A resource adapter must not submit a Work instance that implements WorkContextProvider along with
a valid ExecutionContext to a Connector WorkManager . When such a Work instance is submitted to the
Connector WorkManager for execution, the application server must detect this scenario and throw a
WorkRejectedException to indicate this error scenario. A resource adapter however, could choose to
use a null value for the ExecutionContext parameter in Connector WorkManager methods that takes an
ExecutionContext as an argument.

Jakarta Connectors 177

12.6. HintsContext Interface

12.6. HintsContext Interface

An application server’s WorkManager implementation may allow a Work instance to provide, during
Work submission, application-server specific hints to control the quality-of-service (QoS)
characteristics afforded to it by the WorkManager . These hints provide guidelines to the WorkManager
about how the Work instance is to be distributed or processed.

The HintsContext is a standard WorkContext defined in this specification. It provides a mechanism for
the resource adapter to pass quality-of-service metadata to the WorkManager during the submission of
a Work instance. The application server may then use the specified hints to control the execution of the
Work instance.

178 Jakarta Connectors

12.6. HintsContext Interface

public class HintsContext implements WorkContext {

protected String description = "Hints Context";
protected String name = "HintsContext";

public String getDescription() {
return description;

}

public String getName() {
return name;

}

public void setDescription(String description){
this.description = description;

}

public void setName(String name){
this.name = name;

}

Map<String, Serializable> hints = new HashMap<String, Serializable>();

public void setHint(String hintName, Serializable value) {
hints.put(hintName, value);

}

public Map<String, Serializable> getHints() {
return hints;

}

The resource adapter may use an instance of the standard HintsContext class to specify to the
WorkManager the hints that need to be used during the processing of the Work instance.

The resource adapter may use the setHint method to set a hint in the context. It must use a non-null
hintName while calling the setHint method.

This specification defines only a limited set of standard quality-of-service attributes (that is, hint
names) in Standard Hints. The application server is not required to support the standard hint names.

The specification reserves the right to use names with the prefix jakarta.resource. in future versions of
the specification. Resource adapters and application servers must not use names with the

Jakarta Connectors 179

12.7. WorkContextLifecycleListener Interface

jakarta.resource. prefix for their custom requirements. The specification also recommends that
resource adapter providers choose hintNames using the same rules that they use for Class names.

The WorkManager must reject the establishment of the HintsContext if the values provided for the
hints are not valid. The WorkManager must ignore any unknown hint names submitted by a resource
adapter instance. Configuration tools provided by the application server implementation may be used
by the resource adapter deployer to override or map the hint name-value pairs provided by the
resource adapter developer.

12.6.1. Standard Hints

12.6.1.1. Work Name Hint

The resource adapter may use the string jakarta.resource.Name , defined as a constant in
HintsContext NAME_HINT , as the hintName to indicate a name for a Work instance. This hintName
may be used by the resource adapter and the application server for enhanced logging and debugging
purposes. The value for the hint must be a valid java.lang.String .

12.6.1.2. Long-running Work instance Hint

The resource adapter may use the String jakarta.resource.LongRunning , defined as a constant in
HintsContext. LONGRUNNING_HINT , as the hintName to indicate that a Work instance might run for a
long period of time (typically lasting throughout the lifecycle of the resource adapter instance)
compared to regular tasks that have a shorter execution lifecycle. The value of the hint must be a valid
boolean value (true or false).

For example, the resource adapter might employ this hint for a Work instance that maintains network
connectivity to the EIS instance throughout the lifecycle of the resource adapter.

A WorkManager that supports this hintName may handle such long running tasks in a separate thread
pool or manage and monitor such tasks in a different fashion compared to regular short running tasks.
This type of WorkManager must provide the same Work submission and processing semantics to Work
instances submitted with or without this hint.

12.7. WorkContextLifecycleListener Interface

A WorkContext implementation may implement the WorkContextLifecycleListener interface to get fine-
grained notifications (along with error codes, if any) while the WorkManager sets up the execution
context for a Work instance.

180 Jakarta Connectors

12.7. WorkContextLifecycleListener Interface

public interface WorkContextLifecycleListener {

// Indicates that the WorkContext was set successfully
void contextSetupComplete();

// Indicates that the WorkContext setup failed
void contextSetupFailed(String errorCode);

When a WorkManager sets up the execution context of a Work instance that implements
WorkContextProvider , the WorkManager must make the relevant lifecycle notifications if a
WorkContext instance implements this interface. The possible error conditions that might occur while
associating a WorkContext with a Work instance is captured in WorkContextErrorCodes . The
WorkManager must call the contextSetupFailed method with the appropriate error code in
WorkContextErrorCodes .

When a Work instance is submitted to the Connector WorkManager using one of the methods that
passes in a WorkListener as a parameter, the WorkManager must send Work related notifications to the
WorkListener and WorkContext setup-related notifications to the WorkContextLifecycleListener
interface.

The WorkManager must make the notifications related to Work accepted and started events prior to
calling the WorkContext setup related notifications. The order of setup-related notifications of
WorkContext types within a list of work contexts of a Work instance is undefined. The WorkManager
must make the notifications related to the Work completed events after the WorkContext setup related
notifications.

Generic Work Context Lifecycle listener callback (Sequence Diagram)

Jakarta Connectors 181

12.8. Illustrative Example

Work Manager

Work Work Work

(from server)

(from RA) (from adapter) (from adapter)

1. create an instance .
2. scheduleWork() [startWork() or doWork() may be used as well]
N ¢
y 2
3. workAccepted() or workRejected(): \:
7.
4. when Work is accepted, dispatch a free thread and establish context
for the WorkInstance N
I d
. [if Work implements WorkContextProvider]
5. workStarted() .
> 3

6. getWorkContexts() from Work .
N -

° [for each WorkContext] :
7. get context information .

\

. 7.

and recreate context in application server .

8. call contextSetupComplete() N

N .

7.

...

..

9. after establishing the execution context, call run()
N .

12.8. Illustrative Example

Use Case Scenario, provides details on use case scenarios where the Transaction Inflow contracts
defined in Transaction Inflow are employed. As an example implementing one of the use cases listed
there, let’s consider Wombat Systems, a finance company that has a variety of software systems as part
of its enterprise infrastructure. The software systems include databases, messaging middleware, and
mainframe systems, as well as several Jakarta EE application servers that host business logic written as
Jakarta Enterprise Beans (session, entity, and message-driven beans).

In order to integrate the various disparate software systems, and to allow them to communicate with
each other, Wombat Systems did the following:

* Used the application servers to hold the integration as well as business logic, developed as Jakarta
Enterprise Beans

182 Jakarta Connectors

12.8. llustrative Example

* Purchased or built resource adapters and deployed them on the application servers in order to
provide bidirectional connectivity between the applications residing on the application servers and
the various software systems

A particular situation at Wombat Systems requires that the work done by the application components
during a message inflow be automatically enlisted as part of the imported transaction. The resource
adapter developer then leverages the interfaces defined in the Transaction Inflow portion of the
Connector specification, and achieves the flow-in of transactional context from the EIS to the
application server.

The resource adapter constructs a Work instance that is expected to do work as part of the
transactional message. It also creates an ExecutionContext instance containing the constructed Xid , as
detailed in Processing of Transactional Calls. However, because the resource adapter has to execute the
Work instance with other Work contexts as well, it uses a Work implementation that implements the
WorkContextProvider interface, as shown below.

Jakarta Connectors 183

12.8. Illustrative Example

public class MyResourceAdapterImpl implements ResourceAdapter {

public void start(BootstrapContext ctx) {
bootstrapCtx = ctx;
}

{

WorkManager workManager = myRA.bootstrapCtx.getWorkManager();
workManager.scheduleWork(new MyWork());

public class MyWork implements Work, WorkContextProvider {
void release(){ ..}

List<WorkContext> getWorkContexts() {

TransactionContext txIn = new TransactionContext(xid);
List<WorkContext> icList = new ArraylList<WorkContext>();

icList.add(txIn);

// Add additional WorkContexts
return iclist;

}

void run(){
// Deliver message to MessageEndpoint;

}
}

184 Jakarta Connectors

12.8. llustrative Example

When this instance of MyWork that implements WorkContextProvider is submitted to the
WorkManager for execution, one of the free threads in the thread-pooling implementation of the
application server picks up the Work for execution. The WorkManager then obtains the WorkContext s
(through a call to getWorkContexts method) that need to be set as the execution context for the Work
instance, iterates through the returned WorkContext s, and sets them up as the execution context in
which the Work instance is executed in.

Because an instance of TransactionContext is set, the application server’s WorkManager accepts the
submitted Work instance, and re-creates the transaction execution context. That is, the work to be done
is enlisted as part of the imported transaction. It then calls the run method on the Work object. When
the Work ’s run method is called, all deliveries to the MessageEndpoint runs under the transaction
context of the Work instance, depending on the transaction preference of the bean method that is
being invoked.

Jakarta Connectors 185

13.1. Overview

Chapter 13. Inbound Communicaton

This chapter provides a high level description of the inbound communication model; that is, the
communication from an EIS to an application residing in an application server’s Jakarta Enterprise
Beans container through a resource adapter. This also introduces concepts used in subsequent
chapters related to inbound communication: Message Inflow Message Inflow, Jakarta Enterprise Beans
Invocation Jakarta Enterprise Beans Invocation, and Transaction Inflow Transaction Inflow).

13.1. Overview

In the inbound communication model, the EIS initiates all communication to an application. In this
case, the application may be composed of Jakarta Enterprise Beans (session, entity and message-driven
beans) and resides in a Jakarta Enterprise Beans container.

Inbound Communication Model

Application
Inbound communication

Application Resource

session, ent'ity, server < Adapter
message-driven contract
beans

In order to enable inbound communication, a mechanism to invoke Jakarta Enterprise Beans (session,
entity and message-driven beans) from a resource adapter is necessary. Further, a mechanism is
needed to propagate transaction information from an EIS to an application residing in a Jakarta
Enterprise Beans container.

Message Inflow describes a mechanism to invoke message-driven beans from a resource adapter.
Transaction Inflow provides a mechanism to import transaction information from an EIS into a Jakarta
Enterprise Beans container.

13.2. An Illustrative Use Case

Wombat Systems is a finance company which has a variety of software systems as part of its enterprise
infrastructure. The software systems include databases, enterprise resource planning (ERP) and
customer relationship management (CRM) systems, messaging middleware, mainframe systems, as
well as several Jakarta EE application servers which host business logic written as Jakarta Enterprise
Beans (session, entity and message-driven beans). Further, there are web service interactions that
occur as part of the overall corporate workflow.

Inbound Communication Model (an Illustrative Use Case)

186 Jakarta Connectors

13.2. An Illustrative Use Case

Message Web Service

Publishers Endpoints

corporate firewall boundary 5 SOAP/ HE[TP /HTTPS

Database Message
Systems Publishers

Outbound Resource Adapters

Outbound contracts

session
beans

message-drven
beans

Application Application Server

T Inbound contracts

Inbound Resource Adapters

: » O
ERP CRM Message
Systems Systems Providers
corporate firewall boundary
SOAP / HTTP /| HTTPS

Message Web Service
Publishers Endpoints

In order to integrate the various disparate software systems, and to allow them to communicate with
each other, Wombat Systems did the following:

* Used the application servers to hold the integration as well as business logic, developed as Jakarta
Enterprise Beans.

» Purchased resource adapters and deployed them on the application servers, in order to provide bi-
directional connectivity between the applications residing on the application servers and the
various software systems.

Thus, using the resource adapter as a connectivity enabler, Wombat Systems was able to integrate the
disparate software systems in its enterprise infrastructure.

Jakarta Connectors 187

14.1. Overview

Chapter 14. Message Inflow

This chapter specifies a standard, generic contract between an application server and a resource
adapter that allows a resource adapter to asynchronously deliver messages to message endpoints
residing in the application server independent of the specific messaging style, messaging semantics
and messaging infrastructure used to deliver messages. This contract also serves as the standard
message provider pluggability contract that allows a wide range of message providers to be plugged
into any Jakarta EE compatible application server through a resource adapter.

Note that the usage of the term “Endpoint” in this chapter refers to a message endpoint (for example, a
message-driven application).

14.1. Overview

Asynchronous message delivery or event notification is a widely used application communication
paradigm. Some of the characteristics of the asynchronous message-based communication paradigm
are:

* The message producer may not be directly aware of message consumers. There may be one or
more consumers interested in the message.

* Message delivery is solicited; that is, a message consumer has to express interest in receiving
messages.

* The messaging infrastructure is type-agnostic; that is, it treats messages as a Binary Large Object
(BLOB). It stores and routes messages reliably, to interested messsage consumers, depending on
Quality-of-Service (QoS) capabilities.

* The interaction is inherently loosely coupled. The message producer and the consumer do not
share any execution context.

* The message producer generally is not interested in the outcome of message processing by
consumers. However, it is possible that the provider may care to detect if the message has been
consumed or not.

* The message delivery always involves a message routing infrastructure, which offers varying QoS
capabilities for storing (persistence) and routing messages reliably.

The Jakarta EE application programming model offers a rich set of components: Jakarta Enterprise
Beans (session, entity and message-driven beans), JSPs, and servlets for applications to use. The
message-driven bean is an asynchronous message consumer, or message endpoint.

Jakarta EE applications may use two different patterns to interact with a message provider:

It may directly use specific messaging APIs, such as Jakarta Messaging, to send and synchronously
receive messages. This is achieved using the standard connector contracts for connection
management. See Connection Management. Any message provider may provide a connector
resource adapter that supplies connection objects for use by applications to send and

188 Jakarta Connectors

14.2. Goals

synchronously receive messages using the specific messaging API.

It may use message-driven beans to asynchronously receive messages through a message provider.
The Jakarta Enterprise Beans specification (see Jakarta™ Enterprise Beans Specification, Version
4.0) describes the message-driven bean component contract in detail.

While the above patterns allow a Jakarta EE application to send and receive messages, they do not
provide a standard system-level contract to plugin message providers to an application server and to
deliver messages to message endpoints, or message-driven beans, residing in the application server.
Without a standard pluggability contract, an application server would have to use special contracts to
interact with various message providers, and a message provider has to do the same to interact with
different application servers, which is an m x n problem.

Message Inflow Contract

Message inflow

Application

Application < . Resource Message

server

Adapter Provider

contract

Thus, there is a need for a standard, generic contract between an application server and a message
provider which allows a message provider to deliver messages to message endpoints (message-driven
beans) residing in the application server independent of the specific messaging style, messaging
semantics, and messaging infrastructure used to deliver messages. Such a contract also serves as the
standard message provider pluggability contract which allows a wide range of message providers to be
plugged into any Jakarta EE compatible application server by way of a resource adapter.

14.2. Goals

* Provide a standard, generic mechanism to plug in a wide range of message providers, including
Jakarta Messaging, into a Jakarta EE compatible application server through a resource adapter and
dispatch messages to message endpoints. This will allow Jakarta EE components to act as
consumers of messages with no required changes to the client programming models. Further, the
Jakarta EE components will be able to access messages with no awareness that a resource adapter
is delivering the message.

* This generic contract must be capable of supporting various messaging delivery guarantees
provided by different messaging styles, as well as allow concurrent delivery of messages.

14.3. Message Inflow Model

Message Inflow Contract (Object Diagram)

Jakarta Connectors 189

14.3. Message Inflow Model

Application Server

endpointActivation()

endpointDeactivation()

createEndpoint(XAResource)

isDeliveryTransacted()

message delivery calls

workAccepted(), workStarted()

Message Inflow Contract (Interfaces)

190 Jakarta Connectors

Resource Adapter

14.3. Message Inflow Model

jakarta.resource

import java.beans.PropertyDescriptor;

import jakarta.resource.NotSupportedException;
import jakarta.resource.spi.endpoint.MessageEndpointFactory;

jakarta.resource.spi

package jakarta.resource.spi;

public interface ResourceAdapter {
... // other methods

void endpointActivation(MessageEndpointFactory, ActivationSpec) throws
ResourceException;

void endpointDeactivation(MessageEndpointFactory, ActivationSpec);
XAResource[] getXAResources(ActivationSpec[] specs) throws ResourceException;
}

public interface ActivationSpec { // JavaBean

void validate() throws InvalidPropertyException;

Jakarta Connectors 191

14.3. Message Inflow Model

}
public class InvalidPropertyException extends ResourceException {
public InvalidPropertyException() { ... }
public InvalidPropertyException(String message) { ... }
public InvalidPropertyException(String message, String errorCode) { ... }
public void setInvalidPropertyDescriptors(PropertyDescriptor[] invalidProperties) {
}

public PropertyDescriptor[] getInvalidPropertyDescriptors() {

}
}

public class UnavailableException extends ResourceException {
public UnavailableException() { ... }

public UnavailableException(String message)

{ ...}

public UnavailableException(Throwable cause)

{ ...}
public UnavailableException(String message, Throwable cause) {
} .

}

public class RetryableUnavailableException extends UnavailableException
implements jakarta.resource.spi.RetryableException {}

192 Jakarta Connectors

14.3. Message Inflow Model
Jjakarta.resource.spi.endpoint
package jakarta.resource.spi.endpoint;

import java.lang.Exception;

import java.lang.Throwable;

import java.lang.NoSuchMethodException;

import javax.transaction.xa.XAResource;

import jakarta.resource.ResourceException;

import jakarta.resource.spi.UnavailableException;

public interface MessageEndpointFactory {

MessageEndpoint createEndpoint(XAResource) throws UnavailableException;
MessageEndpoint createEndpoint(XAResource, long) throws UnavailableException;
String getActivationName();

(lass<?> getEndpointClass();

boolean isDeliveryTransacted(java.lang.reflect.Method)

throws NoSuchMethodException;

public interface MessageEndpoint {

void beforeDelivery(java.lang.reflect.Method)
throws NoSuchMethodException, ResourceException;

void afterDelivery() throws ResourceException;

void release();

}

The ResourceAdapter interface supports methods used for endpoint activations and deactivations. The
endpointActivation method is called by the application server when a message endpoint is activated
and the endpointDeactivation method is called by the application server when a message endpoint is
deactivated. The resource adapter is supplied a MessageEndpointFactory instance and a configured
ActivationSpec instance during endpoint activations and deactivations. The resource adapter may
reject an activation by throwing a NotSupportedException, if the activation information is incorrect.

The resource adapter uses the MessageEndpointFactory instance to obtain message endpoint instances
for delivering messages either serially or concurrently. The MessageEndpointFactory may be used for
obtaining any number of message endpoint instances. The createEndpoint method call may throw an
UnavailableException for several reasons:

Jakarta Connectors 193

14.3. Message Inflow Model

* The application server has not completed endpoint activation.
» The application server may decide to limit concurrent message deliveries.
» The application server is about to shutdown.

» The application server may have encountered an internal error condition.

In some cases where the offending condition is temporary, the application server may decide to block
the createEndpoint method call instead of throwing an UnavailableException.

In cases where the MessageEndpointFactory may require the rejection of the creation of the
MessageEndpoint and where the failure to create an endpoint is temporary, the
MessageEndpointFactory may use the RetryableUnavailableException . A resource adapter could then
consider the offending condition as transient, and may then retry the MessageEndpoint creation
process later.

The MessageEndpointFactory may also be used to find out whether message deliveries to a target
method on a message listener interface that is implemented by a message endpoint or a target method
in the Class returned by the getEndpointClass method, will be transacted or not through the
isDeliveryTransacted method. The message delivery preferences must not change during the lifetime
of a message endpoint.

The MessageEndpointFactory also provides a unique name for the message endpoint deployment that it
represents. If the message endpoint has been deployed into a clustered application server, then the
application server must provide the same name for that message endpoint’s activation in each
application server instance. It is recommended that this name be human-readable, and is unchanged
even in cases when the application server is restarted or the message endpoint redeployed.

The MessageEndpointFactory allows a resource adapter to get the Class object corresponding to the
message endpoint. The resource adapter may use the Class object to discover annotations, interfaces
implemented, etc. and modify the message delivery behavior of the resource adapter accordingly. In
the case of message driven beans, the Class object returned is the bean class provided by the
application component developer. Refer to the Jakarta Enterprise Beans specification (see Jakarta™
Enterprise Beans Specification, Version 4.0) for more details on the requirements for message driven
beans with no-methods listener interface. The MessageEndpointFactory must return null if the
MessageEndpoint does not implement the business methods of the message endpoint.

A resource adapter capable of message delivery to message endpoints must provide an ActivationSpec
JavaBean class for each supported endpoint message listener type. The ActivationSpec JavaBean has a
set of configurable properties specific to the messaging style and the message provider. An instance of
the ActivationSpec JavaBean is configured by a message endpoint, or application, deployer to setup the
necessary configuration information for the endpoint activation, and passed on to the resource
adapter by way of the application server during endpoint deployment.

The resource adapter is expected to detect the endpoint message listener type, either by using the
ActivationSpec JavaBean contents or based on the ActivationSpec JavaBean class, and deliver messages
to the endpoint. The resource adapter may optionally pass an XAResource instance while creating a

194 Jakarta Connectors

14.4. Endpoint Deployment

message endpoint in order to receive transactional notifications when a message delivery is
transacted.

The following steps in sequential order represent the various stages in the message endpoint lifecycle,
during which message inflow contracts are used:

1. Endpoint deployment
2. Message delivery (transacted and non-transacted)

3. Endpoint undeployment

14.4. Endpoint Deployment

Endpoint (Message-Driven Bean) Deployment (Actors)

Endpoint Application Application
Server

Resource Adapter

Deployment Descriptor Deployment Descriptor

Deployment
Tool
ol

.............. | Vessage

Provider

Endpoint Deployer

There are several actors involved in the deployment of a message endpoint:

* A message endpoint that is to be deployed on an application server.

* A resource adapter capable of message delivery. The resource adapter is typically provided by a
message provider or a third-party, and is used to plug an external message provider into an
application server. The resource adapter may be standalone that may be shared by different
applications or it may be packaged along with an endpoint application.

* An application server that provides the runtime environment for the application.

A deployer of the application, a human, who understands the application’s needs, and is also aware
of the details of the runtime environment in which the application will be deployed.

* A message provider, or messaging infrastructure, that is the source for messages. A message
provider may provide special tools that can be used by the deployer to setup the message provider
for message delivery.

The roles and responsibilities of the various actors are as follows:

Jakarta Connectors 195

14.4. Endpoint Deployment

14.4.1. Message Endpoint

The message endpoint is typically a message-driven bean application which is to be deployed on the
application server. A MessageEndpoint may be implemented as other implementation specific objects
as well. It asynchronously consumes messages from a message provider. It is also possible for the
application to send and synchronously receive messages by directly using messaging-style specific
APIs.

The message-driven bean developer provides activation configuration information in the message-
driven bean deployment descriptor or by way of metadata annotations (MessageDriven annotation
when the message-driven bean is realized as MDBs). This includes messaging style specific
configuration details, and possibly message provider-specific details as well, which is used by the
message-driven bean deployer to setup the activation.

The Jakarta Enterprise Beans specification (see Jakarta™ Enterprise Beans Specification, Version 4.0)
has more details on the message-driven bean deployment descriptor element activation-config used to
hold the activation configuration information. For example, the deployment descriptor of a message-
driven bean which consumes from a Jakarta Messaging resource adapter may contain:

196 Jakarta Connectors

14.4. Endpoint Deployment
Message-Driven Bean Deployment Descriptor

<!-- message-driven bean deployment descriptor -->

<activation-config>
<activation-config-property>
<activation-config-property-name>
destinationType
</activation-config-property-name>
<activation-config-property-value>
jakarta.jms.Topic
</activation-config-property-value>
</activation-config-property>
<activation-config-property>
<activation-config-property-name>
SubscriptionDurability
</activation-config-property-name>
<activation-config-property-value>
Durable
</activation-config-property-value>
</activation-config-property>
<activation-config-property>
<activation-config-property-name>
MessageSelector
</activation-config-property-name>
<activation-config-property-value>
JMSType = 'car' AND color = 'blue'
</activation-config-property-value>
</activation-config-property>

</activation-config>

The Jakarta Enterprise Beans specification does not specify messaging style-specific descriptor
elements contained within the activation-config element. It is the responsibility of each individual
messaging specification or product to specify the standard descriptor elements specific to the
messaging style for representing the activation configuration information.

14.4.2. Resource Adapter

The resource adapter is a system component located in the application server’s address space (that is,
it has already been deployed) that provides connectivity to message providers and is capable of
delivering messages to message endpoints residing in the application server. The resource adapter is
typically provided by a message provider or a third-party, and is used to plug an external message
provider into an application server. The resource adapter may be standalone, shared by different
applications, or may be packaged along with an endpoint application.

Jakarta Connectors 197

14.4. Endpoint Deployment

The resource adapter provides the following information by way of the resource adapter deployment
descriptor or through metadata annotations described in @Activation, that is used by the endpoint
deployer to setup endpoint activation:

14.4.2.1. List of Supported Message Listener Types

The resource adapter provides a list of endpoint message listener types it supports. Each type is
represented as a name of the Java type of the message listener interface.

14.4.2.2. ActivationSpec JavaBean

The resource adapter provides the Java class name of an ActivationSpec JavaBean, one for each
supported message listener type, containing a set of configurable properties that is used to specify
endpoint activation configuration information during endpoint deployment. Refer to JavaBean
Requirements. An ActivationSpec JavaBean instance is created during endpoint deployment, and the
instance is configured by the endpoint deployer.

During configuration, an ActivationSpec JavaBean instance may check the validity of the configuration
settings provided by the endpoint deployer. The ActivationSpec has a validate method which may be
used during endpoint deployment to validate the overall activation configuration information
provided by the endpoint deployer. This helps to catch activation configuration errors earlier on
without having to wait until endpoint activation time for configuration validation. The implementation
of this self-validation check behavior is optional.

The ActivationSpec JavaBean implementation is recommended to use the JavaBean validation
mechanisms described in JavaBean Validation instead of the validate method to request validation by
the container. If the application server provides an implementation of the Bean Validation
specification (see Jakarta™ Bean Validation Specification, Version 3.0), the application server must
check the validity of the configuration settings provided by the deployer for a JavaBean, using the
capabilities provided by the Bean Validation specification before calling the validate method.

Note, the ActivationSpec JavaBean instance must not make any assumptions about the availability of a
live resource adapter instance.

The resource adapter may also provide in its deployment descriptor, using the required-config-
property element, an optional list of configuration property names required for each activation
specification. This information may be used during deployment to ensure that the required
configuration properties are specified. An endpoint activation should fail if the required property
values are not specified.

The usage of the required-config-property element to require the specification of a configuration
property during deployment is deprecated. Instead, the ActivationSpec JavaBean is recommended to
use the JavaBean Validation facilities described in JavaBean Validation. The ActivationSpec JavaBean
may annotate the field or the JavaBeans-compliant accessor method corresponding to the
configuration property with the @NotNull constraint (or the corresponding XML validation descriptor
equivalent), to indicate that the configuartion property must be specified during activation

198 Jakarta Connectors

14.4. Endpoint Deployment

specification.

The resource adapter may also provide in its deployment descriptor, using the config-property element,
a list of configuration property names for the activation specification.

In the case of Jakarta Messaging message providers, the destination property value (refer to See
Activation Configuration for Message Inflow to Jakarta Messaging Endpoints) may also be an object
that implements the jakarta.jms.Destination interface. In such a case, the resource adapter should
provide an administered object (refer to Administered Objects) that implements the
jakarta.jms.Destination interface. The specific type of the Jakarta Messaging destination is specified by
the destinationType property value. The Jakarta Messaging ActivationSpec JavaBean properties should
be standardized by the Jakarta Messaging community.

14.4.2.3. Administered Objects

The resource adapter may provide the Java class name and the interface type of an optional set of
JavaBean classes representing various administered objects. Refer to JavaBean Requirements.
Administered objects are specific to a messaging style or message provider.

For example, some messaging styles may need applications to use special administered objects for
sending and synchronously receiving messages through connection objects using messaging-style
specific APIs. It is also possible that administered objects may be used to perform transformations on
an asynchronously received message in a message provider-specific way.

Note, administered objects are not used for setting up asynchronous message deliveries to message
endpoints. The ActivationSpec JavaBean is used to hold all the necessary activation information
needed for asynchronous message delivery setup.

An administered object may implement the ResourceAdapterAssociation interface to associate a
resource adapter instance with the administered object.The ResourceAdapterAssociation interface
specifies the methods to associate a administered object JavaBean with a ResourceAdapter JavaBean.

Prior to using the administered object, the application server must create an association between the
administered object and a ResourceAdapter JavaBean, by calling the setResourceAdapter method on the
administered object. A successful association is established only when the setResourceAdapter method
on the administered object returns without throwing an exception.

An administered object instance, that implements ResourceAdapterAssociation interface must ensure
that its Java class and the interface type implements jakarta.resource.Referenceable and
java.io.Serializable interfaces. This enables an application server to store the administered object
instance in the JNDI naming environment. Refer to Scenario: Referenceable for details on the JNDI
reference mechanism.

During deserialization of the administered object, the application server must establish the association
between the administered object and the resource adapter instance by calling setResourceAdapter.

Jakarta Connectors 199

activation.html#UNKNOWN
activation.html#UNKNOWN

14.4. Endpoint Deployment

14.4.2.4. Configuring Administered Objects

* Create an administered object JavaBean instance. This will initialize the instance with the defaults
specified through the JavaBean mechanism.

* Apply the administered object class configuration properties specified in the resource adapter
deployment descriptor, on the administered object instance. This may override some of the default
values specified by way of the JavaBean mechanism.

» The application server is required to merge values specified by way of annotations and deployment
descriptors as specified in Deployment Descriptors and Annotations, before applying the
administered object class configuration properties.

* The deployer may further override the values of the administered object before deployment.

14.4.3. Endpoint Deployer

The endpoint deployer is a human who has the responsibility to deploy the message endpoint, or
application, on an application server. The deployer is expected to know the requirements of the
application and be aware of the details of the runtime environment in which the application will be
deployed.

The deployer selects a suitable resource adapter that matches the requirements of the application
depending on endpoint message listener type, QoS capabilities, and so on. The deployer configures an
ActivationSpec JavaBean instance based on the information provided by the application developer or
assembler, which is contained in the endpoint deployment descriptor or by way of metadata
annotations described in @Activation. The deployer may also use additional provider-specific message
information to configure the ActivationSpec JavaBean instance.

The deployer also configures a set of administered objects, if necessary. The resource adapter provides
the JavaBean classes for such administered objects. The deployer may also interact with a message
provider to do the necessary setup for message delivery.

Then the deployer deploys the application on the application server. As part of the deployment
procedure, the deployer provides all the configured JavaBean instances to the application server, and
also specifies the chosen resource adapter instance to be used for message delivery.

14.4.4. Application Server

The application server provides the runtime environment for the message endpoint. It activates
message endpoints when they are deployed. All such deployed endpoints are automatically reactivated
when an application server restarts after a normal shutdown or system crash. When an application is
undeployed, the application server deactivates the endpoint.

When an endpoint is activated, the application server calls the chosen resource adapter by way of the
endpointActivation method and passes on a MessageEndpointFactory instance and the ActivationSpec
JavaBean, which was configured by the endpoint deployer. The application server does not interpret
the contents of the ActivationSpec JavaBean and treats it as an opaque entity. The resource adapter

200 Jakarta Connectors

14.4. Endpoint Deployment

may reject an endpoint activation by throwing a NotSupportedException during the
endpointActivation method call. This is due to incorrect activation information.

The application server must make the application component environment namespace of the endpoint
(that is being activated), available to the resource adapter during the call to the endpointActivation and
endpointDeactivation methods. The resource adapter may use this JNDI context to access other
resources.

The resource adapter uses the MessageEndpointFactory to create message endpoint instances to
deliver messages either serially or concurrently. There is no limit to the number of such endpoints that
may be created to deliver messages. However, in practice the application server may decide to limit
concurrency by rejecting attempts to create new endpoints by throwing an UnavailableException. The
application server may also attempt to block a message delivery method call in order to limit
concurrency and perform flow control.

Note, a resource adapter may attempt to deliver messages during the endpointActivation method call.
It is up to the application server to decide whether to allow message delivery before activation is
completed. If the application server chooses to prevent message delivery during endpoint activation, it
may block the createEndpoint method call until the activation is completed or throw an
UnavailableException.

The resource adapter may pass an XAResource instance while creating a message endpoint in order to
receive transactional notifications when a message delivery is transacted. The application server must
notify the resource adapter through the XAResource instance if a message delivery is transacted.

During endpoint deployment, the application server places the configured administered objects, if any,
supplied by the endpoint deployer in the component namespace java:comp/env. The endpoint deployer
specifies a location in the component namespace where each administered object should reside. The
configured administered objects residing in the component namespace are used by the endpoint
application in a messaging style-specific manner.

When an endpoint is deactivated, the application server notifies the resource adapter through the
endpointDeactivation = method call. The application server must pass the same
MessageEndpointFactory instance and the ActivationSpec JavaBean instance that was used during
endpoint activation.

14.4.5. Message Provider

A message provider, or messaging infrastructure, is typically an external system that is the source for
messages. Message providers may vary in their QoS capabilities. A message provider may provide
special tools that can be directly used by the endpoint deployer to setup the message provider for
message delivery.

Endpoint (Message-Driven Bean) Deployment Steps

Jakarta Connectors 201

14.4. Endpoint Deployment

10. Place administered objects (if any) in
the component namespace.

Application
Server

11. Endpoint activation: Passes a handle
to a MessageEndpointFactory and the

9. Supply the ActivationSpec ActivationSpec JavaBean.
JavaBean and administered
objects (if any), and specify
the chosen resource adapter. : Resource Adapter

Deployment Descriptor

Endpoint Application
Message listener types

Deployment Descriptor supported.

ii. An ActivationSpec class
(JavaBean) for each sup-
ported message listener.

i. Activation configuration

information (messaging
style specific). May also

have message provider

specific details.

iii. JavaBean classes for
Admistered objects, if any.

4. Get endpoint activation confi- F. . A 2. Query resource adapter apout
guration information. ‘. : o message listener types, details
‘ : on ActivationSpec, admin objects
and QoS capabilities.
Deployment
Tool

A
. 1. Choose a suitable resource adapter.
3. Get activation config details from endpoint.

6. Create a ActivationSpec JavaBean instance
from the chosen resource adapter and
configure the JavaBean properties.

7. Configure necessary administered objects.

8. Deploy application.

................. > Messare

Provider

5. Setup for message delivery.

Endpoint Deployer

14.4.6. Endpoint Deployment Steps
The sequence of steps involved in endpoint deployment involving the various actors is as follows:

1. The endpoint deployer obtains a list of resource adapters capable of delivering messages to the
message endpoint, and chooses a suitable one. The decision is based on the message listener type
supported by the resource adapter and its QoS capabilities. However, it is possible that the message
endpoint application may already contain a suitable resource adapter. In such a case, the resource
adapter is deployed along with the endpoint application and is used to deliver messages to the
specific endpoint application.

2. The deployer obtains the activation configuration information provided by the endpoint developer
available by way of metadata annotations or in the endpoint deployment descriptor.

3. The deployer may need to setup the message provider for message delivery to the endpoint. This
may be done using a message provider specific tool.

4. The deployer obtains an ActivationSpec JavaBean from the selected resource adapter and
configures it. The configuration information is messaging style-specific and may include message
provider specific details.

5. The deployer configures the JavaBean instances of administered objects, if any are necessary.

202 Jakarta Connectors

14.4. Endpoint Deployment

6. The deployer provides the configured JavaBean instances to the application server, and also
specifies the resource adapter chosen for message delivery. Note, the contract between a
deployment tool and an application server is out of scope for this specification.

7. The application server places the administered objects, if any, in the java:comp/env component
namespace for use by the message endpoint.

8. The application server activates the message endpoint by calling the chosen resource adapter
through the endpointActivation method and passes a MessageEndpointFactory instance and the
configured ActivationSpec JavaBean instance provided by the deployer. The resource adapter may
reject the endpoint activation by throwing a NotSupportedException, which is due to incorrect
activation information.

14.4.7. Requirements

* A resource adapter that is capable of delivering messages to message endpoints must provide a list
of endpoint message listener types it supports, and also must provide an ActivationSpec JavaBean
class for each message listener type it supports. This information must be part of the resource
adapter deployment descriptor.

* ActivationSpec and all administered objects must be JavaBeans.

* A resource adapter must allow an application server to make concurrent endpointActivation
method or endpointDeactivation method calls.

* The endpoint application’s activation-config properties, specified in the endpoint deployment
descriptor or through the message endpoint’s annotation, should be a subset of the ActivationSpec
JavaBean’s properties. There must be a one-to-one correspondence between the activation-config
property names and the ActivationSpec JavaBean’s property names. This allows automatic merging
of the activation-config properties with an ActivationSpec JavaBean instance during endpoint
deployment. Any specified activation-config property which does not have a matching property in
the ActivationSpec JavaBean should be treated as an error.

* When an application server notifies a resource adapter during endpoint deactivation, it must pass
the same MessageEndpointFactory instance and the ActivationSpec JavaBean instance that was
used during endpoint activation.

* Any exception thrown by the endpointDeactivation method call must be ignored. After this method
call the endpoint is deemed inactive.

* All deployed endpoints must be automatically reactivated by the application server when it restarts
after a normal shutdown or system crash.

* Before a resource adapter is undeployed, the application server must deactivate all active
endpoints consuming messages from that specific resource adapter.

14.4.8. Structure of a Message Listener Interface

A message listener interface implemented by a message endpoint, a message-driven bean, is allowed to
have multiple methods. Each method of a message listener interface is allowed to have multiple

Jakarta Connectors 203

14.4. Endpoint Deployment

arguments, a return value, and throw checked application exceptions or unchecked system exceptions.

Checked exceptions are thrown only by a message listener implementation. The message-driven bean
container must propagate to the resource adapter any checked exception that occurs during message
dispatch.

Unchecked exceptions (java.lang.RuntimeException and java.lang.Error) may be thrown by either the
message listener implementation or may be thrown by the application server code during message
dispatch. The application server must wrap such an unchecked exception within a
jakarta.ejb.EJBException, = which is a java.lang.RuntimeException, and throw the
jakarta.ejb.EJBException to the resource adapter.

The Jakarta Enterprise Beans specification describes in detail the structural requirements of a message
listener interface implemented by a message-driven bean.

14.4.9. Multiple Endpoint Activations With Similar Activation Configu